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Abstract

In this paper we propose the inÞmum of the Arrow-Pratt index of absolute risk

aversion as a measure of global risk aversion of a utility function. We show

that, for any given arbitrary pair of distributions, there exists a threshold level

of global risk aversion such that all increasing concave utility functions with

at least as much global risk aversion would rank the two distributions in the

same way. Furthermore, this threshold level is sharp in the sense that, for any

lower level of global risk aversion, we can Þnd two utility functions in this class

yielding opposite preference relations for the two distributions.
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1. Introduction

The famous papers of Hadar and Russell (1969) and Rothschild and Stiglitz (1970)

developed a notion of riskiness. One distribution is riskier than another when the

former dominates the latter according to the monotonic second order stochastic

dominance (MSOSD, henceforth) criterion, that is, when it is unanimously preferred

by all expected utility maximizers who prefer more to less and who are risk averters.

Unanimity requires thus that all decision makers agree with the most extreme risk

averse preferences, that is, those giving all the weight to the worst possible outcome.

Clearly, for these extreme preferences, which of the two distributions will be preferred

depends on the lower tail of the distributions only. However, when we want to verify

that individuals with lower degrees of risk aversion will agree on that ordering as

well, we need to compare the two distributions over the entire support. Indeed, the

main result in Hadar and Russell (1969) and Rothschild and Stiglitz (1970) is that a

pair of distributions can be ranked according to the MOSOSD criterion if and only if

a strong integral condition relating the two distributions is satisÞed. This condition

is quite stringent so that the ordering on the set of distributions induced by the

MSOSD criterion is indeed very partial.

A question that naturally arises in the theory of decision under risk is whether the

comparison between risky prospects would be facilitated by requiring unanimity only

on a subset of the class of increasing and concave utility functions with appealing

properties. This task has proven quite unproductive since many additional natural

properties imposed on utility functions, like decreasing absolute risk aversion (DARA,

henceforth),1 do not yield a non-dense basis through which an operative condition

relating two distribution functions can be obtained (see Gollier and Kimball, 1996).

One exception is the class of mixed utility functions, that are those having non-

negative odd derivatives and non-positive even derivatives. Caballé and Pomansky

(1996) show that the set of negative exponential functions constitutes a basis for

that family of utilities. Therefore, a distribution is preferred to another by all

individuals with increasing utilities exhibiting sign-alternating derivatives if and only

if the Laplace transform of the former is smaller than that of the latter.2

In the present paper we take back the approach of Hadar and Russell (1969)

and Rothschild and Stiglitz (1970). However, instead of classifying the pairs of

1A Bernoulli utility belonging to the DARA class exhibits a demand for a risky asset that increases

with wealth (Arrow, 1970; Pratt, 1964).
2The class of mixed utility functions constitutes a subset of the DARA class and includes all

the DARA utilities typically found in some economic applications, like the hyperbolic absolute risk

aversion, the isoelastic, or the exponential functions. In fact, mixed utilities satisfy other appealing

properties found in the literature, like risk vulnerability (Gollier and Pratt, 1996), properness (Pratt

and Zeckhauser, 1987) or standardness (Kimball, 1993).
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distributions into �uncontroversial� �those that can be ranked according to MSOSD�

and �controversial� �those that cannot�, we wish to associate to every pair of

distributions a parameter reßecting how controversial their ranking is. SpeciÞcally,

for any arbitrary pair of distributions we wish to characterize the �lowest� degree of

risk aversion such that all decision makers with at least this degree of risk aversion

would unanimously prefer one distribution over the other. The lower the degree of

required risk aversion the less controversial the ranking will be. Notice that the main

point of our analysis is not the ordering, since this is given by the preferences of the

most risk averse individuals. The critical question is how many more individuals will

agree with such an ordering.

Our analysis is based on the use of the key observation, made by Diamond

and Stiglitz (1974), Meyer (1977) and Lambert and Hey (1979), that two random

variables can be ranked according to MSOSD if and only if any common concave

transformation of these random variables can be ranked according to MSOSD. Using

this fact, the strategy we follow is to identify the �least� concave utility function u for

which the distributions of the transformed random variables can be ranked according

to MSOSD. We know then that all the increasing and concave transformations of

this utility function u will rank the two original distributions as the function u does

and, hence, all the individuals having utilities displaying more absolute risk aversion

at each point than that of the threshold utility u will choose unanimously the same

random variable.

The concept of �lowest� risk aversion (or �least� concavity) requires to deÞne a

previous notion of global risk aversion (or global concavity) permitting a complete

order over the set of increasing and concave utility functions. Such a notion of global

concavity can be made precise in a number of ways. In this paper we consider the

inÞmum of the Arrow-Pratt index of absolute risk aversion (ARA, henceforth) of a

utility function over its domain as a measure of global concavity. The main result

of our analysis appears in Theorem 3.1, where we demonstrate that the partition

of utilities generated by that global measure of concavity has the property that,

for any given arbitrary pair of distributions, we can Þnd a threshold level of global

risk aversion s∗ such that all increasing and concave utility functions with a level
s ∈ [s∗,∞) unanimously rank one distribution over the other and that for any level
s ∈ (0, s∗) we can Þnd two utility functions with this level of global concavity that
will reverse the previous ranking. We also explore alternative notions of global risk

aversion like the supremum or the average of the Arrow-Pratt index of ARA and

show that we cannot obtain such sharp a characterization.

The paper is organized as follows. Section 2 reviews some concepts appearing in

the literature of decision under risk. Section 3 contains our main results concerning
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alternative measures of global risk aversion and their relationship with MSOSD. Our

concluding remarks in Section 4 are followed by a fairly lengthy and technical section

with the proofs.

2. Orderings on distributions

Consider the set of random variables taking values on the interval [a, b]. If F�x is

the distribution function of the random variable �x, then the expectation (or mean)

of the distribution of �x is EF�x =
R
[a,b] zdF�x(z).

3 Suppose that an agent has a state-

independent preference relation deÞned on the space of random variables and that

this preference relation has an expected utility representation (or Bernoulli utility) u.

This means that the agent prefers the random variable �x with distribution function

F�x to the random variable �y with distribution function F�y wheneverZ
[a,b]

u(z)dF�x(z) ≥
Z
[a,b]

u(z)dF�y(z). (2.1)

It is well known that the Bernoulli utility u is unique up to a strictly increasing

affine transformation. Note that a state-independent preference relation deÞned on

the space of random variables induces a preference relation on the set of distribution

functions. Therefore, we will say that F�x is preferred to F�y by an individual having

the Bernoulli utility u, F�x %
u
F�y , if (2.1) holds. Moreover, F�x is strictly preferred

to F�y by an individual with Bernoulli utility u, F�x Â
u
F�y, whenever (2.1) holds with

strict inequality.

DeÞnition 1.

(a) The distribution function F�x dominates the distribution function F�y according

to the monotonic second order stochastic dominance (MSOSD) criterion, F�x %
D
F�y ,

if F�x %
u
F�y for all the Bernoulli utility functions u that are increasing and concave.

(b) The distribution function F�x strictly dominates the distribution function F�y

according to the MSOSD criterion, F�x Â
D
F�y , if F�x Â

u
F�y for all the Bernoulli utility

functions u that are increasing and strictly concave.

Therefore, if F�x %
D
F�y , then all the individuals who prefer more to less and are

risk averse will prefer the random variable �x to the random variable �y. According

to the well known analysis of Hadar and Russell (1969) and Rothschild and Stiglitz

(1970), we can state the following famous result:

3The integral appearing in the expression is the Lebesgue integral with respect to the Lebesgue-

Stieltjes measure (or distribution) associated with the distribution function F (see section 1.4 of

Ash, 1972).
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Proposition 1. F�x %
D
F�y if and only if

Z x

a
[F�x(z)− F�y(z)] dz ≤ 0 for all x ∈ [a, b] . (2.2)

Moreover, F�x Â
D
F�y if the previous inequality is strict for all x ∈ (a, b).

Consider now an increasing and concave function u and two random variables �x

and �y. Let Fu(�x) and Fu(�y) be the distribution functions associated with the composite

random variables u(�x) and u(�y), respectively. The following corollary, arising from

the papers of Diamond and Stiglitz (1974), Meyer (1977), and Lambert and Hey

(1979), will play a crucial role in our analysis:

Corollary 1. Fu(�x) %
D
(Â
D
)Fu(�y) if and only if Fv(�x) %

D
(Â
D
)Fv(�y) for all the Bernoulli

utility functions v that are increasing and (strictly) concave transformations of u.

Proof. Obvious from DeÞnition 1, since Fu(�x) %
D
(Â
D
)Fu(�y) if and only if Fu(�x) %

v
(Â
v
)Fu(�y)

for all the Bernoulli utility functions v that are increasing and (strictly) concave

transformations of u.

The order induced on the set of distribution functions by the MSOSD criterion

is very partial as the distributions that can be ranked according to that criterion

constitute indeed a very small subset of distribution functions. This can be easily

deduced from just looking at the stringent integral condition (2.2). In contrast, the

max-min criterion discussed in Rawls (1974), which makes preferable the distribution

with the better worst possible outcome, induces a quite complete ordering on the set

of distributions. Before deÞning more precisely this lexicographic criterion we need

the following deÞnition that will be used extensively in the rest of the paper:

DeÞnition 2. The right-continuous function g deÞned on [a, b] changes sign at x if

there exist two real numbers ε > 0 and η ≥ 0 such that the following two conditions
hold:

(i) g(z) · g(y) ≤ 0 for all (z, y) ∈ (x− ε, x)× [x, x+ η] and
(ii) g(z) · g(y) < 0 for some (z, y) ∈ (x− ε, x)× [x, x+ η] .

DeÞnition 3.

(a) The distribution function F�x strictly dominates the distribution function F�y

according to the max-min criterion, F�x Â
M
F�y, if there exists a �z ∈ (a, b) such that

F�x(z) ≤ F�y(z) for all z ∈ [a, �z), and F�x(z) < F�y(z) for some z ∈ [a, �z).
(b) The distribution function F�x dominates the distribution function F�y according

to the max-min criterion, F�x &
M
F�y, if either F�x Â

M
F�y or F�x(z) = F�y(z) for all z ∈ [a, b].
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Clearly, the ordering induced by the max-min criterion is much more complete

than that induced by the MSOSD criterion. For instance, all pairs {F�x, F�y} of
distribution functions for which the function F�x − F�y changes sign a Þnite number
(including zero) of times can be ranked according to the former criterion.

We will restrict our attention throughout the paper to pairs of distributions

functions {F�x, F�y} of random variables taking values on the interval [a, b] that satisfy
the following assumption:

Assumption M. The function F�x − F�y changes sign a Þnite number of times and
F�x Â

M
F�y, whereas neither F�x %

D
F�y nor F�y %

D
F�x.

On the one hand, the assumption of a Þnite number of changes of sign is sufficient

to ensure that there is a point on [a, b] of Þrst sign change according to DeÞnition

2.4 On the other hand, the assumption of F�x Â
M
F�y and neither F�x %

D
F�y nor

F�y %
D
F�x is made without loss of generality whenever the two random variables under

consideration cannot be ranked according to the MSOSD criterion and the function

F�x − F�y changes sign a Þnite number of times.
Consider the case where the distribution functions F�x and F�y cannot be ranked

by MSOSD. Suppose that we could Þnd a utility function u such that the composite

random variables satisfy Fu(�x) %
D
Fu(�y) . Then, by Corollary 1, the random variable

�x will be preferred to �y by all agents having Bernoulli utility functions that are

increasing and concave transformations of u. The rest of the paper is devoted

to Þnd the �least concave� utility function permitting the MSOSD ranking of the

distributions associated with the composite random variables when the original pair

of distributions satisÞes Assumption M.

3. Results

3.1. The Main Result

Let u be a twice continuously differentiable function on (a, b). The Arrow-Pratt index

of absolute risk aversion (ARA) of the function u at z ∈ (a, b) is Au(z) = −u00(z) /u0(z)
(see Arrow, 1971; and Pratt, 1964). We will Þrst propose a global measure of risk

aversion (the inÞmum of the ARA index) inducing a partition over the set of increas-

ing and concave functions, such that all the utility functions displaying more global

4Consider in this respect the case where F�x and F�y satisfy F�x < F�y on [a, c) , F�x = F�y at c and

they intersect at all points of the form c+ (1/n) for every positive integer n. Obviously, the function

F�x − F�y changes sign inÞnitely many times and there is no point of Þrst change of sign according
to DeÞnition 2.
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risk aversion than a threshold level rank one distribution over the other. Consider

thus the following partition of the set of increasing and concave utility functions on

[a, b] that are twice continuously differentiable on (a, b). A function u belongs to the

class I(s) if the inÞmum of the ARA index over its domain is s,

u ∈ I(s), whenever inf
z∈(a,b)

Au(z) = s.

Consider the class of increasing, concave and twice continuously differentiable

utility functions r(·; s) exhibiting an ARA index, Ar(·;s)(z), equal to the constant
s > 0 for all z ∈ (a, b) . These functions exhibiting constant absolute risk aversion
(CARA) have a functional form that is an increasing affine transformation of the

function −e−sz. Notice that all u ∈ I(s) with s ≥ s∗ are increasing and concave
transformations of the CARA utility with an ARA index equal to s∗. Therefore, an
implication of Corollary 1 is that, if Fr(�x;s∗) Â

D
Fr(�y;s∗) then Fu(�x) Â

D
Fu(�y) for all

u ∈ I(s) with s ≥ s∗. From this observation we derive the main result of our paper,

which is stated in the following theorem:

Theorem 3.1. Assume that the pair of distribution functions {F�x, F�y} satisÞes
Assumption M. Then, there exists a real number s∗ > 0 such that

(a) Fu(�x) Â
D
Fu(�y) for all u ∈ I(s) with s > s∗.

(b) There exists a u ∈ I(s) such that Fu(�x) Â
D
Fu(�y) for all s ∈ (0, s∗).

(c) There exists a u ∈ I(s) such that neither Fu(�x) %
D
Fu(�y) nor Fu(�y) %

D
Fu(�x) for

all s ∈ (0, s∗).

Parts (a) and (b) of the previous theorem imply that we can always Þnd a function

u, with an arbitrarily given value of the inÞmum of its ARA index, for which the

random variables u(�x) and u(�y) can be compared according to the MSOSD criterion.

In fact, part (a) says that, for sufficiently large values of the inÞmum of the ARA

index, MSOSD between two random variables always holds. On the contrary, part (c)

tells us that, if a concave transformation of two random variables does not generate

MSOSD, then that transformation must exhibit a small value of the inÞmum of its

ARA index.

Consider the class of increasing, concave and twice continuously differentiable

utility functions r(·; s) exhibiting an ARA index, Ar(·;s)(z), equal to the constant
s > 0 for all z ∈ (a, b) . These functions exhibiting constant absolute risk aversion
(CARA) have a functional form that is an increasing affine transformation of the

function −e−sz. Notice that all u ∈ I(s) with s ≥ s∗ are increasing and concave
transformations of the CARA utility with an ARA index equal to s∗. Therefore, an
implication of the previous theorem is that, if Fr(�x;s∗) Â

D
Fr(�y;s∗) then Fu(�x) Â

D
Fu(�y)

for all u ∈ I(s) with s ≥ s∗.
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The following corollary characterizes explicitly the critical value s∗ of the inÞmum
of the ARA index above which unanimity is reached:

Corollary 2. The critical value s∗ deÞned in Theorem 3.1 is the smallest positive

real number s satisfyingZ x

a
[F�x(z)− F�y(z)] e−szdz ≤ 0 for all x ∈ [a, b] . (3.1)

3.2. Alternative Global Notions of Risk Aversion

Obviously, there are many alternative ways by which one can deÞne a global measure

based on the ARA index. We will next discuss two of them, namely, the supremum

of the ARA index and the average of the ARA index over the utility domain. We

will see that the kind of results that can be obtained with these two measures are

much less appealing than those obtained with the measure based on the inÞmum of

the ARA index.

Consider now the following partition of the set of increasing and concave utility

functions on [a, b] that are twice continuously differentiable on (a, b). A function u

belongs to the class P (s) if the supremum of the ARA index over its domain is s,

u ∈ P (s), whenever sup
z∈(a.b)

Au(z) = s.

The following theorem parallels Theorem 3.1 for the partition formed by the sets

P (s) with s ∈ (0,∞) :

Theorem 3.2. Assume that the pair of distribution functions {F�x, F�y} satisÞes
Assumption M. Then, there exists a real number s∗ > 0 such that,

(a) Neither Fu(�x) %
D
Fu(�y) nor Fu(�y) %

D
Fu(�x) for all u ∈ P (s) with s ∈ (0, s∗).

(b) There exists a u ∈ P (s) such that Fu(�x) Â
D
Fu(�y) for all s > s

∗.

(c) There exists a u ∈ P (s) such that neither Fu(�x) %
D
Fu(�y) nor Fu(�y) %

D
Fu(�x) for

all s > s∗.

Note that parts (a) and (c) of the previous theorem imply that we can always Þnd

a function u with an arbitrarily given value of the supremum of its ARA index, for

which the random variables u(�x) and u(�y) cannot be ranked according to the MSOSD

criterion. Part (b) tells us that, for a sufficiently high value s of the supremum of

the ARA index, it is possible to order two given random variables for some utility

function belonging to P (s). However, as follows from part (a), MSOSD turns out to

be unfeasible for sufficiently small values of the supremum of the ARA index.

Obviously, the ARA index cannot be properly applied to non-differentiable utility

functions. Consider then the index of thriftiness that has been proposed as a global
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measure of concavity for general strictly increasing functions (see Chateauneuf et al.,

2000). This index captures the maximal relative drop of the slope of the function u

along its domain and is given by

T (u) = sup
z1<z2≤z3<z4

·
u(z2)− u(z1)
z2 − z1

Á
u(z4)− u(z3)
z4 − z3

¸
.

For functions deÞned on [a, b] that are differentiable, strictly increasing and concave,

the index of thriftiness becomes simply T (u) = u0(a)/u0(b) . In this case this index
measures how signiÞcative is the reduction in the slope of the utility function along

its domain. It is plain that the same value of the thriftiness index is compatible

with a plethora of local behaviors. For instance, the reduction in the slope can be

uniformly distributed over the domain, as occurs with the CARA functions, or it

can be concentrated on a very small interval. In the latter case the utility function

could exhibit a local ARA index that is zero at all points of its domain except on

an arbitrarily small interval where the ARA index could become arbitrarily large.

In fact, if we allow for non-differentiable functions, the drop of the slope can occur

at a single point and, of course, all concave transformations of such a function will

not be differentiable at that point. Note that any increasing and strictly concave

transformation of a given function u will exhibit an index of thriftiness larger than

that of u. It should also be noticed that the index of thriftiness is a measure equivalent

to the average value of the ARA index displayed by a twice continuously differentiable

utility function u over its domain. Clearly, the average ARA of the function u is

1

b− a
Z b

a

−u00(z)
u0(z)

dz =
1

b− a
£− ln ¡u0(b)¢+ ln ¡u0(a)¢¤ =

1

b− a ln
µ
u0(a)
u0(b)

¶
=

1

b− a ln (T (u)) .

The following theorem establishes the connection between the index of thriftiness

and the MSOSD ordering:

Theorem 3.3. Assume that the pair of distribution functions {F�x, F�y} satisÞes
Assumption M. Then, there exists a real number t∗ > 0 such that,

(a) For all t ∈ [t∗,∞) there exists an increasing and concave Bernoulli utility
function v with T (v) = t satisfying Fv(�x) %

D
Fv(�y).

(b) For all t ∈ (t∗,∞) there exists a smooth, increasing and concave utility
function u with T (u) = t satisfying Fu(�x) Â

D
Fu(�y).

The previous theorem provides a very partial result, since it just allows us to

establish the existence of a lower bound t∗ on the index of thriftiness so that stochastic
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dominance between two distributions holds for some utility function displaying an

index of thriftiness larger than that lower bound. The following corollary provides

the explicit characterization of that critical value t∗ of the thriftiness index:

Corollary 3. The critical value t∗ deÞned in Theorem 3.3 is given by

t∗ = −

Z zM

z1
[F�x(z)− F�y(z)] dzZ z1

a
[F�x(z)− F�y(z)] dz

,

where

z1 = max

(
argmin
x∈[a,c]

Z x

a
[F�x(z)− F�y(z)] dz

)
,

c is the smallest real number at which the integralZ x

a
[F�x(z)− F�y(z)] dz

changes sign, and

zM = max

(
argmax
x∈[a,b]

Z x

a
[F�x(z)− F�y(z)] dz

)
.

4. Final remarks

The main result of our paper (Theorem 3.1) provides a sharp characterization of

how controversial is the ordering of two distributions on the basis of the extreme

most risk averse preferences when the global degree of concavity is measured by the

inÞmum of the ARA index over the support. It establishes that s∗ is indeed the
lowest degree of global concavity for which we can obtain unanimity in the ranking

of the two distributions. Below this threshold we will always Þnd preferences with

the same degree of global concavity yielding transforms of the variables that cannot

be ranked according to MSOSD.

In contrast, the supremum of the ARA index does not provide such a sharp

characterization. We only can Þnd a lower bound on the degree of concavity below

which there are no preferences such that all their concave transformation agree in

ranking one distribution over the other. Finally, when we use the average ARA index

as a global measure of concavity, we cannot Þnd a threshold level of concavity above

which we obtain unanimity.

To conclude we simply wish to establish the bridge between our results and the

classical analysis of Hadar and Russell (1969) and Rothschild and Stiglitz (1970).

In our paper we have introduced a partition on the set of twice continuously

differentiable utility functions according to the inÞmum of their ARA index over
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their common domain. The class corresponding to the value s of the inÞmum of the

ARA index is I(s). Notice that the class of functions with s ≥ 0 exactly corresponds
to the set of increasing twice continuously differentiable concave functions. The

aforementioned classical analysis relating concavity of the Bernoulli utility functions

and MSOSD provides a limited answer to the question of whether it is possible to

rank two risks by simply knowing that the utility function belongs to a particular

set. The most celebrated result of that analysis says that, if we restrict to pairs

of distributions satisfying the integral condition (2.2), then Fu(�x) %
D

Fu(�y) for all

u ∈ I(s) with s ≥ 0. This corresponds to part (a) of our Theorem 3.1. In line with

part (b) of the same theorem, when (2.2) is satisÞed, it can be shown that there exist

increasing functions u ∈ I(s) with s < 0 such that Fu(�x) %
D
Fu(�y) and (again in line

with (c)) there exists a u ∈ I(s) such that neither Fu(�x) %
D
Fu(�y) nor Fu(�y) %

D
Fu(�x) for

all s < 0. Therefore, we can Þnd non-concave utility functions whose increasing and

concave transformations would rank one distribution over the other. Furthermore,

paralleling our Theorem 3.2, when the two distributions satisfy (2.2), it is also a

known result that neither Fu(�x) %
D
Fu(�y) nor Fu(�y) %

D
Fu(�x) for all u ∈ P (s) with

s < 0, where P (s) is the class of utility functions with a supremum of their ARA

index equal to s.

In our analysis we show that, when two distributions cannot be ranked by

MSOSD, one can nevertheless obtain stochastic dominance, but restricted to a class

of increasing and concave functions displaying sufficiently high global risk aversion,

namely, the class I(s) with s being greater than an appropriate value s∗. We also
show that neither Fu(�x) %

D
Fu(�y) nor Fu(�y) %

D
Fu(�x) for all u ∈ P (s) with s ∈ (0, s∗).

Thus, our results generalize the aforementioned classical results to any given arbitrary

pair of distributions satisfying Assumption M.

5. Proofs

5.1. A road map

As shown by Meyer (1977), when two random variables cannot be ranked by MSOSD

there is always some utility function u (not necessarily concave) such that the

resulting distribution of the utility satisÞes the integral condition for MSOSD. Notice,

however, that by not imposing that the critical utility function be concave, its

corresponding concave transformations need not be concave either. This is indeed

an undesirable feature when individuals face typical optimization problems under

risk. Using this fact, the strategy we follow is to identify the �least� concave utility

function u for which the distributions of the transformed random variables can be

10



ranked according to MSOSD. We know then that all the increasing and concave

transformations of this utility function u will rank the two original distributions as

the function u does and, hence, all the individuals having utilities displaying more

absolute risk aversion at each point than that of the threshold utility u will choose

unanimously the same random variable.

It is obvious that Þnding the �least� concave utility function cannot have an

unambiguous answer, even when one chooses to measure the local concavity of

a utility function by its ARA index. To set the ground we start by analyzing

the two extreme types of increasing and concave transformations of the original

random variables. First, we consider transformations that are linear (or risk neutral)

everywhere except at a single point around which they concentrate all the concavity.

Secondly, we will consider transformations that display an ARA index uniformly

distributed over its domain, that is, these transformations exhibit constant absolute

risk aversion (CARA, henceforth). Clearly, the two types of functions under

consideration exhibit a very different behavior of their local ARA indexes. If the

function is essentially linear, the inÞmum (supremum) of the local ARA index over

its domain becomes zero (inÞnite) and, thus, no operative lower bound is obtained in

terms of the ARA index. In contrast, the global concavity of a utility belonging to the

CARA family is perfectly summarized by the ARA index evaluated at any arbitrary

point of its domain. For the Þrst type of functions we obtain the smallest drop of the

slope at the kink permitting the ordering of the transformed random variables by

MSOSD. As for the second type we prove the existence of a critical minimum value

of the ARA index allowing for the MSOSD ranking of the two transformed risks.

Our main result follows immediately from the analysis made for the previous two

families of functions. If there exists a minimal value of the ARA index for which

MSOSD holds for the corresponding CARA transformation of the original random

variables, then MSOSD will hold for all utility functions whose inÞmum of the ARA

index is larger than that threshold value. This is so because the latter functions

turn out to be concave transformations of the critical CARA function. However, for

all lower values of the inÞmum of the ARA index, it is possible to Þnd functions for

which the MSOSD ranking does not apply. Furthermore, if there is a piecewise linear

utility function allowing for the MSOSD ranking of the given pair of distributions,

then we can Þnd functions with an inÞmum of their ARA index arbitrarily close to

zero permitting this ranking.

We then go into examining whether similar results can be obtained with other

reasonable measures of global concavity. To this end, we consider two natural

alternative measures of global concavity: the supremum of the ARA index and

the average ARA index of the utility function over its domain. These alternative

11



measures turn out to yield much weaker results concerning our original problem.

For the supremum our results say that there is a threshold level such that there

is no utility function with lower global concavity giving a common transformation

of the original random variables permitting their ranking by MSOSD. Further, we

demonstrate that for higher degrees of global concavity unanimity is possible but

not pervasive. For the case of the average ARA as a global measure of concavity,

we show that above some threshold value of this measure we can always Þnd utility

functions allowing for the ranking of the two commonly transformed risks by MSOSD.

Clearly, none of the two measures yields such a sharp characterization of preferences

as the one we obtained with the inÞmum of the ARA index as the global measure of

concavity.

We start by examining transformations that are linear (or risk neutral) every-

where except at a single point and then move on to the case of transformations with

the concavity uniformly distributed over the support (CARA). These two sets of

results permit a simple proof of the main results.

5.2. Local risk neutrality almost everywhere

5.2.1. The non-differentiable case

We start by considering essentially linear transformations of two given random

variables. This means that, if we view these transformations as utility functions,

they display risk neutrality everywhere except at a point where they exhibit a kink.

The next proposition shows explicitly how we can construct a common increasing

and concave transformation of two random variables having distributions that cannot

be ranked according to the MSOSD criterion, in order to obtain MSOSD for the

corresponding transformed random variables. If one of the two random variables is

strictly preferred to the other according to the max-min criterion, then the integral

condition (2.2) will be satisÞed for an interval of low realizations of these variables.

Our strategy consists on scaling down the larger values of both random variables so

that the previous integral condition will hold for the whole range of values of the

transformed random variables.

Proposition 2. Consider the class of continuous functions with the following

functional form:

k(z;α, z1) =


z for z ∈ [a, z1)

αz + (1− α)z1 for z ∈ [z1, b] .
(5.1)

Assume that the pair of distribution functions {F�x, F�y} satisÞes Assumption

M. Then, there exist two real numbers α∗ ∈ (0, 1) and z1 ∈ (a, b) such that

12



Fk(�x;α∗,z1) %
D
Fk(�y;α∗,z1) and Fk(�x;α,z1) Â

D
Fk(�y;α,z1) for all α < α

∗ , whereas neither

Fk(�x;α,z1) %
D
Fk(�y;α,z1) nor Fk(�y;α,z1) %

D
Fk(�x;α,z1) for all α > α

∗ .

Proof. Note Þrst that the function k(·;α, z1) is continuous. From Assunption M

and DeÞnition 3, we know that the integralZ x

a
[F�x(z)− F�y(z)] dz (5.2)

must change its sign at least once on (a, b) and be non-positive on an interval [a, c] ,

with c < b, before becoming positive for the Þrst time. We can thus deÞne the

interval [a, c] with c < b satisfyingZ x

a
[F�x(z)− F�y(z)] dz ≤ 0 for all x ∈ [a, c] , (5.3)

and Z x

a
[F�x(z)− F�y(z)] dz > 0 for all x ∈ (c, c+ h) and for some h > 0. (5.4)

We can also deÞne the real number z1 ∈ (a, b) as

z1 = max

(
argmin
x∈[a,c]

Z x

a
[F�x(z)− F�y(z)] dz

)
, (5.5)

and the number zM as

zM = max

(
argmax
x∈[a,b]

Z x

a
[F�x(z)− F�y(z)] dz

)
. (5.6)

Therefore, z1 is the largest value that minimizes the integral (5.2) on the interval

[a, c]. Note also that the function F�x − F�y must change sign at z1. Moreover, zM is

the largest value that maximizes the integral (5.2) on the interval [a, b].

Since Fk(�x;α,z1)(k) = F�x
¡
k−1(k;α, z1)

¢
and Fk(�y;α,z1)(k) = F�y

¡
k−1(k;α, z1)

¢
, we

have that the MSOSD condition given in (2.2) for the transformed random variables,Z y

a

h
Fk(�x;α,z1)(k)− Fk(�y;α,z1)(k)

i
dk ≤ 0 for all y ∈ [k(a;α, z1), k(b;α, z1)] ,

will be satisÞed if and only if the following two inequalities hold:Z x

a
[F�x(z)− F�y(z)] dz ≤ 0 for all x ∈ [a, z1] , (5.7)

and
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Z z1

a
[F�x(z)− F�y(z)] dz +

Z y

z1

h
F�x
³
k−(1−α)z1

α

´
− F�y

³
k−(1−α)z1

α

´i
dk ≤ 0,

for all y ∈ [z1,αb+ (1− α)z1] . (5.8)

Making the change of variable, z =
k − (1− α)z1

α
, the integral condition (5.8)

becomesZ z1

a
[F�x(z)− F�y(z)] dz + α

Z x

z1
[F�x (z)− F�y (z)] dz

¾
≤ 0 for all x ∈ [a, b] . (5.9)

Note that condition (5.7) always holds, as dictated by the deÞnition of z1. Moreover,

condition (5.9) holds if and only if

V (α, z1) ≡
Z z1

a
[F�x(z)− F�y(z)] dz + α

Z zM

z1
[F�x (z)− F�y (z)] dz

¾
≤ 0. (5.10)

This is so because, according to the deÞnition of zM ,Z zM

a
[F�x (z)− F�y (z)] dz ≥

Z x

a
[F�x (z)− F�y (z)] dz =

Z zM

a
[F�x (z)− F�y (z)] dz +

Z x

zM

[F�x (z)− F�y (z)] dz, for all x ∈ [a, b] .

Therefore, as α ∈ (0, 1) ,

α

Z x

zM

[F�x (z)− F�y (z)] dz ≤ 0 for all x ∈ [zM , b] . (5.11)

The function V (α, z1, ) deÞned in (5.10) is strictly increasing in α, since

∂V (α, z1, zM)

∂α
=

Z zM

z1
[F�x (z)− F�y (z)] dz > 0,

where the strict inequality comes from the deÞnitions of z1 and zM . Moreover,

V (0, z1) =

Z z1

a
[F�x(z)− F�y(z)] dz < 0.

and

V (1, z1) =

Z zM

a
[F�x(z)− F�y(z)] dz > 0.

Therefore, we can choose the unique value α∗ ∈ (0, 1) for which

V (α∗, z1) = 0. (5.12)

The real number α∗ is the largest value of α satisfying Fk(�x;α,z1) %
D
Fk(�y;α,z1), that is,
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α∗ = max

½
α ∈ R such that

Z y

a

h
Fk(�x;α,z1)(k)− Fk(�y;α,z1)(k)

i
dk ≤ 0

for all y ∈ [k(a;α, z1), k(b;α, z1)]
o
.

Therefore, according to (5.10) and (5.12)), α∗ would be given by

α∗ = −

Z z1

a
[F�x(z)− F�y(z)] dzZ zM

z1
[F�x(z)− F�y(z)] dz

, (5.13)

where z1 and zM are given in (5.5) and (5.6).

As follows from (5.10), the inequality V (α, z1) < 0 holds for all α < α
∗, and this

implies that Z y

a
[F�x(k)− F�y(k)] dk < 0 for all y ∈ [a,αb− (1− α)z1] ,

which in turn means that Fk(�x;α,z1) Â
D
Fk(�y;α,z1) for all α < α

∗.

Finally, for all α > α∗ there exists a number y ∈ (z1,αb− (1− α)z1) such thatZ y

a
[F�x(k)− F�y(k)] dk > 0,

while Z z1

a
[F�x(k)− F�y(k)] dk < 0.

According to Proposition 1, the previous two inequalities mean that neither

Fk(�x;α,z1) %
D
Fk(�y;α,z1) nor Fk(�y;α,z1) %

D
Fk(�x;α,z1) for all α > α

∗.

The next corollary shows that the pair (α∗, z1) is in some sense unique. In

particular, if we had chosen a point different from z1, as deÞned in (5.5) , in the

functional form of the function k(·;α, z1), the value of the maximal slope α∗ should
be smaller in order to preserve stochastic dominance. It follows then that our

characterization of α∗ is sharp.

Corollary 4. Assume that the pair of distribution functions {F�x, F�y} satisÞes
Assumption M. Consider the set of pairs of numbers {�α, �z} ∈ (0, 1) × (a, b) for
which Fk(�x;α,�z) %

D
Fk(�y;α,�z) and Fk(�x;α,�z) Â

D
Fk(�y;α,�z) for all α < �α, whereas neither

Fk(�x;α,�z) %
D
Fk(�y;α,�z) nor Fk(�y;α,�z) %

D
Fk(�x;α,�z) for all α > �α. Then, �α ≤ α∗.
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Proof. Note from (5.10) and (5.12) that the pairs {�α, �z} must satisfy

V (�α, �z) ≡
Z �z

a
[F�x(z)− F�y(z)] dz + �α

Z zM

�z
[F�x (z)− F�y (z)] dz = 0. (5.14)

In order to preserve MSOSD for the transformed random variables, �z must belong

to the interval [a, c] satisfying conditions (5.3) and (5.4). Furthermore, both the

deÞnition of z1 in (5.5) and the fact that α
∗ ∈ (0, 1) imply that V (α∗, �z) ≥

V (α∗, z1) = 0. Therefore, since the function V (α, z) is strictly decreasing in α, it

follows from (5.14) that �α ≤ α∗.

We conclude this section with a technical remark concerning the location of the

value zM deÞned in (5.6) when the two original distributions have the same mean.5

Note that the value zM could be located at the upper limit of the interval [a, b] .

However, if we assume that the distributions of the random variables �x and �y satisfy

EF�x = EF�y , then zM < b. We Þrst state the following lemma:

Lemma 1. Assume that the distribution functions F�x and F�y satisfy EF�x = EF�y
and neither F�x %

D
F�y nor F�y %

D
F�x. Then, the function F�x − F�y must change sign on

(a, b) at least twice.

Proof. Since neither F�x %
D
F�y nor F�y %

D
F�x, it is well known that F�x − F�y must

change sign at least once on (a, b) .6 Let us proceed by contradiction and assume

that the right-continuous function F�x − F�y changes sign only once so that, without
loss of generality, assume that F�x(x) ≤ F�y(x) for all x ∈ [a, x∗), and F�x(x) > F�y(x)
for all x ∈ (x∗, b). Therefore, letting H(x) =

R x
a [F�x(z)− F�y(z)] dz , we have that

H(x∗) ≤ 0. Clearly, H(x) is increasing for x ∈ [x∗, b] . Moreover, H(b) = 0 since, by
integrating by parts,Z b

a
[F�x(z)− F�y(z)] dz = −

Z
[a,b)

zdF�x(z)+

Z
[a,b]

zdF�y(z) = −EF�x+EF�y = 0. (5.15)

Therefore H(x) ≤ 0 for all x ∈ [a, b] , which means that F�x %
D
F�y, and this is the

desired contradiction.

Corollary 5. Assume that the pair of distribution functions {F�x, F�y}} satisÞes
Assumption M and EF�x = EF�y . Then, zM ∈ (a, b) and the function F�x−F�y changes
sign at zM .

5This is the scenario considered by Atkinson (1970).
6See Hadar and Rusell (1969).
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Proof. From (5.6) and the fact that F�x %
D
F�y does not hold, we get

Z zM

a
[F�x(z)− F�y(z)] dz 6= 0.

Moreover, from (5.15) , we haveZ b

a
[F�x(z)− F�y(z)] dz = 0.

Therefore, zM < b. Finally as zM is interior, it is clear from (5.6) that F�x−F�y must
change sign at zM .

Note then that when the pair {F�x, F�y} satisÞes Assumption M with EF�x = EF�y ,

the function F�x − F�y must change sign both at z1 and at zM , which agrees with the
statement of Lemma 1.

5.2.2. The differentiable case

The transformation k(·;α∗, z1) of the original random variables proposed in Propo-

sition 2 in order to obtain MSOSD has the undesirable property of being non-

differentiable. Obviously, all the increasing and concave transformations of the func-

tion k(·;α∗, z1) are also non-differentiable at z1. However, these functions can be
arbitrarily approximated by a differentiable function, as the next proposition shows:

Proposition 3. Consider the class of functions deÞned on [a, b] with the following

functional form:

q(z; ε,β, z1) =



(1 + ε)z − εz1 + ε2 for z ∈ [a, z1 − ε]

g(z) for z ∈ (z1 − ε, z1 + ε)

(β − ε)z + (1− β + ε)z1 + ε2 for z ∈ [z1 + ε, b] .

(5.16)

Assume that the pair of distribution functions {F�x, F�y} satisÞes Assumption M.
Then, for all β ∈ (0,α∗), there exists a real number ε > 0 and a function g(·)
such that the function q(·; ε,β, z1) is smooth, increasing, concave, and satisÞes
Fq(�x;η,β,z1) Â

D
Fq(�y;η,β,z1) for all η ∈ (0, ε] .

Proof. According to Proposition 2, we can choose a real number β ∈ (0,α∗)
for which Fk(�x;β,z1) Â

D
Fk(�y;β,z1), where z1 and α

∗ are deÞned in (5.5) and (5.13) ,
respectively. Since we have strict MSOSD, we can slightly perturb the continuous

function k(·,β, z1), whose functional form is given in (5.1), while preserving strict
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MSOSD. Hence, for a given smooth, increasing and concave function g, there exist

a sufficiently small real number ε > 0 such that the function q(z; ε,β, z1) with the

functional form given in (5.16) satisÞes Fq(�x;ε,β,z1) Â
D
Fq(�y;ε,β,z1). Note that in order

to make the function q(·; ε,β, z1) smooth we need to pick g so that g0(z1−ε) = 1+ε,
g0(z1 + ε) = β − ε, and all the higher order derivatives of g evaluated both at z1 − ε
and at z1 + ε must be equal to zero. Such a function g exists according to Borel�s

theorem. In particular, consider the smooth function

f1(z) =


e−1/z for z > 0

0 for z ≤ 0.
(5.17)

Let

f2(z) = f1 (m · [z − z1 + ε]) · f1(z1 + ε− z), (5.18)

where m is a strictly positive real number, and deÞne

f3(z) =

R z
−∞ f2(x)dxR∞
−∞ f2(x)dx

. (5.19)

Clearly f3 is a smooth function with f3(z) = 0 for z ≤ z1−ε, f3(z) = 1 for z ≥ z1+ε,
and f3 is strictly increasing on (z1 − ε, z1 + ε) . Consider now the smooth decreasing
function f4(z) = 1 + ε− (1 + 2ε− β)f3(z). Therefore, g(z) =

R z
a f4(x)dx− εz1 + ε2

is the desired smooth function provided we choose the positive scalar m so that the

condition g(z1 + ε) = z1 + βε is met. This condition ensures the continuity of the

function q(z; ε,β, z1) at z1 + ε. Note also that

g0(z) = f4(z) = 1 + ε− (1 + 2ε− β)f3(z) ≥ −ε+ β > 0, (5.20)

where the week inequality comes from the fact that f3(z) ≤ 1, and the strict

inequality holds for a sufficiently small value of ε. Moreover,

g00(z) = f 04(z) = −(1 + 2ε− β)f 03(z) = −(1 + 2ε− β)
f2(z)R∞

−∞ f2(x)dx
< 0, (5.21)

where the inequality holds since β < 1 and f2(z) > 0 for z ∈ (z1 − ε, z1 + ε) . It is
then obvious that Fq(�x;η,β,z1) Â

D
Fq(�y;η,β,z1) for all η ∈ (0, ε).

The next proposition shows that, if the non-differentiable function k(z;α, z1) is

picked so that neither Fk(�x;α,z1) %
D
Fk(�y;α,z1) nor Fk(�y;α,z1) %

D
Fk(�x;α,z1), then this

function can also be approximated by a smooth function:

Proposition 4. Consider the class of functions with the functional form given in

(5.16). Assume that the pair of distribution functions {F�x, F�y} satisÞes Assumption
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M. Then, for all β ∈ (α∗, 1), there exists a real number ε > 0 and a function

g(·) such that the function q(·; ε,β, z1) is smooth, increasing, concave, and neither
Fq(�x;η,β,z1) %

D
Fq(�y;η,β,z1) nor Fq(�y;η,β,z1) %

D
Fq(�x;η,β,z1) for all η ∈ (0, ε].

Proof. Construct a function q(z; ε,β, z1) having the functional form given

in (5.16) with β ∈ (α∗, 1) , where z1 and α∗ are deÞned in (5.5) and (5.13) ,

respectively. The function q(z; ε,β, z1) can be obviously constructed so that

neither Fq(�x;ε,β,z1) %
D
Fq(�y;ε,β,z1) nor Fq(�y;ε,β,z1) %

D
Fq(�x;ε,β,z1) for a sufficiently small

real number ε > 0, by following the same steps of the proof of Proposition 3.

It is important to point out that in our previous two propositions we have chosen

the functional form (5.16) and not another because that form allow us to analyze

explicitly the global behavior of its ARA index. The following corollary characterizes

the limiting behavior of the inÞmum and the supremum of the ARA index of the

function q(·; ε,β, z1) deÞned in (5.16) as ε becomes arbitrarily small:

Corollary 6.

(a) inf
z∈(a.b)

µ
lim
ε→0 Aq(·;ε,β,z1)(z)

¶
= 0;

(b) sup
z∈(a.b)

µ
lim
ε→0 Aq(·;ε,β,z1)(z)

¶
=∞.

Proof. (a) Obvious, since the function q(z; ε,β, z1) is linear for z /∈ (z1 − ε, z1 + ε).
(b) From the construction of q(·; ε,β, z1), we can compute the ARA index on the

interval (z1 − ε, z1 + ε) as

Aq(·;ε,β,z1)(z) =
−q00(z; ε,β, z1)
q0(z; ε,β, z1)

=
−g00(z)
g0(z)

=
(1 + 2ε− β)f2(z)

1 + ε− (1 + 2ε− β) R z−∞ f2(x)dx,
where the third equality comes from the deÞnition of f3 in (5.19) and from (5.20)

and (5.21) . Therefore,

lim
ε→0

µ
lim
z→z1

−q00(z; ε,β, z1)
q0(z; ε,β, z1)

¶
=

µ
1− β
β

¶
lim
ε→0

Ã
lim
z→z1

Ã
f2(z)R z

−∞ f2(x)dx

!!
=

µ
1− β
β

¶
lim
ε→0

 lim
z→z1

exp
n
− 1−m
m·(z−z1)

o
R z
−∞ f2(x)dx

 , (5.22)

where the last equality comes from the expressions for f1 and f2 given in (5.17) and

(5.18) , respectively. In order to compute the limit (5.22) observe that, on the one

19



hand, lim
ε→0

µ
lim
z→z1

³R z
−∞ f2(x)dx

´¶
= 0, since f2 is bounded and continuous. On the

other hand, we get

lim
z→z1

µ
exp

½
− 1−m
m · (z − z1)

¾¶
=



0 for m ∈ [0, 1)

1 for m = 1

∞ for m > 1.

As β ∈ (0, 1) , we thus have

lim
ε→0

µ
lim
z→z1

−q00(z; ε,β, z1)
q0(z; ε,β, z1)

¶
=∞ for m ≥ 1.

For m ∈ [0, 1) , we apply L�H�opital�s rule so that

lim
z→z1

exp
n
− 1−m
m·(z−z1)

o
R z
−∞ f2(x)dx

 = lim
z→z1

µ
1−m

m · (z − z1)2
¶
=∞.

Therefore, we obtain the desired conclusion for all m > 0.

We have considered so far utility functions that exhibit local risk neutrality almost

everywhere except in a small neighborhood of a point where all the risk aversion is

concentrated. In the next section we will use a completely different approach, since

instead of concentrating all the concavity in a small interval, we are going to consider

transformations of the original random variables through functions that have all the

risk aversion uniformly distributed over its domain.

5.3. Constant absolute risk aversion

In this section we will show that, given two random variables �x and �y such that

F�x Â
M
F�y , then there exists a CARA utility function r(·; s) having an absolute risk

aversion index s for which Fr(�x;s) %
D
Fr(�y;s). Recall that, if one of the two random

variables is strictly preferred to the other according to the max-min criterion, then the

integral condition (2.2) will hold for an interval of low realizations of these variables.

A CARA transformation of these variables attaches a relative lower weight to high

realizations, and this relative weight decreases with the ARA index s. Therefore, for

a sufficiently large value of s the integral condition (2.2) will be satisÞed over the

whole range of values of the transformed random variables. The following proposition

establishes the basic existence result:

Proposition 5. Assume that the pair of distribution functions {F�x, F�y} satisÞes
Assumption M. Then, there exists a real number s∗ such that Fr(�x;s∗) %

D
Fr(�y;s∗) and
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Fr(�x;s) Â
D
Fr(�y;s) for all s > s

∗, whereas neither Fr(�x;s) %
D
Fr(�y;s) nor Fr(�y;s) %

D
Fr(�x;s)

for all s < s∗.

Proof. Consider Þrst the class of continuously differentiable, increasing and concave

utility functions with the following functional form:

v(z; s, z0) =


−1
s
e−s(z−z0) + z0 +

1

s
for x ∈ [a, z0)

z for x ∈ [z0, b] ,
(5.23)

where s > 0 and z0 is the smallest value on [a, b] at which the function F�x(z)−F�y(z)
changes sign (see DeÞnition 2). Let us Þnd a value of s for which Fv(�x;s,z0) %

D
Fv(�y;s,z0),

that is, Z y

v(a;s)

h
Fv(�x;s,z0)(v)− Fv(�y;s,z0)(v)

i
dv ≤ 0 for all y ∈ [v(a; s, z0), b] .

By performing the corresponding change of variable, the previous inequality becomes:Z x

a
[F�x(z)− F�y(z)] v0(z; s, z0)dz ≤ 0 for all x ∈ [a, b] ,

which in turn can be decomposed into the following two inequalities:Z x

a
[F�x(z)− F�y(z)] v0(z; s, z0)dz ≤ 0 for all x ∈ [a, z0] , (5.24)

and Z z0

a
[F�x(z)− F�y(z)] v0(z; s, z0)dz +

Z x

z0
[F�x(z)− F�y(z)] dz ≤ 0

for all x ∈ [z0, b] . (5.25)

Note that inequality (5.24) always holds, since the integrand is non-positive by

the deÞnition of z0. Taking into account the deÞnition of zM in (5.6) , we know thatZ x

zM

[F�x(z)− F�y(z)] dz ≤ 0, for all x ∈ [zM , b]

DeÞne the real number zN as

zN = max

(
argmin
x∈[a,b]

Z x

a
[F�x(z)− F�y(z)] dz

)
. (5.26)

Hence, we getZ zM

zN

[F�x(z)− F�y(z)] dz ≥
Z x

z0
[F�x(z)− F�y(z)] dz for all x ∈ [z0, b] .
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Therefore, (5.25) holds wheneverZ z0

a
[F�x(z)− F�y(z)] v0(z; s)dz +

Z zM

zN

[F�x(z)− F�y(z)] dz = 0. (5.27)

Let K =

Z zM

zN

[F�x(z)− F�y(z)] dz and

H(x) =

Z x

a
[F�y(z)− F�x(z)] dz for x ∈ [a, z0] .

The mapping H(x) is an increasing and right-continuous function which induces a

Lebesgue-Stieltjes measure on [a, z0]. Therefore, (5.27) can be written asZ z0

a
v0(z; s, z0)dH(z) = K. (5.28)

Moreover, by the deÞnition of zM ,

−
Z z0

a
dH(z) +K =

Z z0

a
[F�x(z)− F�y(z)] dz +

Z zM

zN

[F�x(z)− F�y(z)] dz ≥
Z z0

a
[F�x(z)− F�y(z)] dz +

Z zM

z0
[F�x(z)− F�y(z)] dz =

Z zM

a
[F�x(z)− F�y(z)] dz > 0.

Therefore, letting C =

Z z0

a
dH(z), we can conclude that K > C > 0. Moreover, by

noticing that v0(z; s) = e−s(z−z0), equation (5.28) becomesZ z0

a
e−s(z−z0)dH∗(z) =

K

C
, (5.29)

where H∗(z) =
H(z)

C
is a distribution function on [a, z0] because H

∗(z0) = 1.

Equation (5.29) has a unique solution for s, since KC > 1, the LHS of (5.29) is strictly

increasing in s, lim
s→0

Z z0

a
e−s(z−z0)dH∗(z) = 1 and lim

s→∞

Z z0

a
e−s(z−z0)dH∗(z) = ∞.

Let �s be the unique solution of equation (5.29) . Clearly, the inequality in (5.25)

becomes strict whenever s > �s.

Consider now the increasing and concave function

w(z; �s, z0) =


z for z ∈ [a, z0)

−1
�s
e−�s(z−z0) + z0 +

1

�s
for z ∈ [z0, b] .

The increasing and concave transformation of v(z; �s, z0) given by w(v(z; �s, z0); �s, z0)

exhibits a constant ARA index, since

w(v(z; �s, z0); �s, z0) = −1
�s
e−�s(z−z0) + z0 +

1

�s
for z ∈ [a, b].
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Obviously, Fw(v(�x;s,z0);s,z0) Â
D
Fw(v(�y;s,z0);s,z0) for all s > �s. Hence, Fr(�x;s) Â

D
Fr(�y;s) for

all s > �s, where r(·; s) is a CARA utility function with an ARA index equal to s.

Since, for s sufficiently close to zero, neither Fr(�x;s) %
D
Fr(�y;s) nor Fr(�y;s) %

D
Fr(�x;s),

we can Þnd by continuity the value s∗ ∈ (0, �s) for which Fr(�x;s∗) %
D
Fr(�y;s∗) and

Fr(�x;s) Â
D
Fr(�y;s) for all s > s

∗, whereas neither Fr(�x;s) %
D
Fr(�y;s) nor Fr(�y;s) %

D
Fr(�x;s)

for all s < s∗.

The following corollary extends the previous proposition to functions that are

not necessarily CARA. In order to obtain MSOSD between two random variables we

only require a sufficiently large value of the ARA index on some interval (a, z0) with

z0 < b.

Corollary 7. Assume that the pair of distribution functions {F�x, F�y} satisÞes
Assumption M. Then, there exists a pair of real numbers {�s, z0} ∈ (0,∞)× (a, b)
such that F�x %

u
(Â
u
)F�y for every twice differentiable, increasing and concave Bernoulli

utility function u satisfying Au(z) ≥ (>)�s for z ∈ (a, z0) .

Proof. Obvious from the proof of Corollary 1 and from Pratt (1964), since

u is an increasing and (strictly) concave transformation of the utility function

v(·; �s, z0), whose functional form is given in the expression (5.23) and that satisÞes

Fv(�x;s∗,z0) %
D
Fv(�y;s∗,z0).

As follows from the proofs of the previous corollary and of Proposition 5, the

upper limit z0 of the interval where strict concavity is required turns out to be the

smallest value at which the function F�x(z)−F�y(z) changes sign. Moreover the critical
value �s of the ARA index on the interval (0, z0) is given by the value of s solving

equation (5.29).

5.4. The proofs of the main results

We have considered in Sections 5.2.2 and 5.3 two basic families of functions for

which the transformations of the random variables �x and �y through these functions

can be ranked according to the MSOSD criterion. One family was that of the CARA

functions, which was analyzed in Section 5.3. Recall that r(·; s) denotes a CARA
utility displaying an ARA index equal to s. The other family is formed by functions

that have all the risk aversion concentrated on a small interval of its domain. The

functional form of a function belonging to the latter class is given in (5.16). Note

that the function q(·; ε,β, z1) is an increasing, concave and smooth function that is
linear for all values that do not belong to the interval (z1 − ε, z1 + ε). Moreover, the
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derivative of q(·; ε,β, z1) is equal to 1 + ε for all values of the interval (a, z1 − ε),
while its derivative is equal to β − ε for all values belonging to (z1 + ε, b).

The proof our main result (Theorem 3.1) relates Propositions 3, 4 and 5 with the

partition formed by the sets I(s):

Proof of Theorem 3.1. (a) Let s∗ be the real number deÞned in Proposition 5.
Note that, if u ∈ I(s) with s > s∗, then u is an increasing and concave transformation
of the CARA utility r (·; s) , since Au(z) ≥ s for all z ∈ (a, b) (see Pratt, 1964). Then,
as Fr(�x;s) Â

D
Fr(�y;s), we must have Fu(�x) Â

D
Fu(�y) as follows from Corollary 1 .

(b) Consider the utility function q(z; ε,β, z1) characterized in Proposition 3 so

that Fq(�x;ε,β,z1) Â
D
Fq(�y;ε,β,z1). Clearly, the inÞmum of the ARA index of q(z; ε,β, z1) is

zero. Obviously, any concave function w will satisfy Fw(q(�x;ε,β,z1)) Â
D
Fw(q(�y;ε,β,z1)) as

follows from Corollary 1. Therefore, the inÞmum of the ARA index of w (q(·; ε,β, z1))
can take any positive value.

(c) Obvious from Proposition 5 since the CARA utility r(·; s) belongs to I(s).

Proof of Corollary 2. Obviously, the critical value s∗ of the ARA index yielding
stochastic dominance for CARA utilities is the smallest positive real value of s

satisfyingZ y

r(a;s)

h
Fr(�x;s)(r)− Fr(�y;s)(r)

i
dr ≤ 0 for all y ∈ [r(a; s), r(b; s)] . (5.30)

From Proposition 5 we know that such a critical value s∗ exists. Therefore, by

performing the corresponding change of variable in (5.30), s∗ turns out to be the
smallest positive real value of s satisfying (3.1).

The proof of Theorem 3.2 uses arguments similar to those of Theorem 3.1, as we

next show:

Proof of Theorem 3.2. (a) Let s∗ be the real number deÞned in Proposition 5.
Note that, if u ∈ P (s) with s < s∗, then the CARA utility r (·; s) is an increasing
and concave transformation of u since Au(z) ≤ s for all z ∈ (a, b) (see Pratt, 1964).
However, if either Fu(�x) %

D
Fu(�y) or Fu(�y) %

D
Fu(�x), then either Fr(�x;s) %

D
Fr(�y;s) or

Fr(�y;s) %
D
Fr(�x;s), respectively, as follows from Corollary 1. But this cannot occur

since, by construction, neither Fr(�x;s) %
D
Fr(�y;s) nor Fr(�y;s) %

D
Fr(�x;s) for all s < s

∗.

(b) Obvious from Proposition 5, since the CARA utility r(·; s) belongs to P (s).
(c) Consider the utility function q(z; ε,β, z1) characterized in Proposition 4 so

that neither Fq(�x;ε,β,z1) %
D
Fq(�y;ε,β,z1) nor Fq(�y;ε,β,z1) %

D
Fq(�x;ε,β,z1). By making ε

arbitrarily small, the supremum of the ARA index of q(·; ε,β, z1) can be made
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arbitrarily large (see part (b) of Corollary 6). Therefore, for every set P (s)

with s Þnite, there exists a function u ∈ P (s) that is an increasing and convex

transformation w of the function q(·; ε,β, z1). Note that in order to make u concave,
the function w must be linear for all values that do not belong to the interval

(z1 − ε, z1 + ε) . It immediately follows that neither Fw(q(�x;ε,β,z1)) %
D
Fw(q(�y;ε,β,z1))

nor Fw(q(�y;ε,β,z1)) %
D
Fw(q(�x;ε,β,z1)) for some function w, since otherwise all concave

transformations of w (q(z; ε,β, z1)) will make one random variable preferred to the

other according to the MSOSD criterion, and this contradicts the fact that neither

Fq(�x;ε,β,z1) %
D
Fq(�y;ε,β,z1) nor Fq(�y;ε,β,z1) %

D
Fq(�x;ε,β,z1) .

Finally, the proof of Theorem 3.3 applies the concept of thriftiness to the class of

essentially linear utility functions discussed in Sections 4 and 5. It is obvious that the

thriftiness of the function k(·;α, z1) deÞned in (5.1) is T (k(·;α, z1)) = 1/α. Hence,

the following proof is just a straightforward application of Propositions 2 and 3:

Proof of Theorem 3.3. (a) Just note that the function k(·;α, z1) deÞned in
Proposition 2 satisÞes Fk(�x;α,z1) %

D
Fk(�y;α,z1) for all α ≤ α∗, and T (k(·;α, z1)) = 1/α .

(b) The smooth, increasing and concave function q(·; η,β, z1) deÞned in Proposi-
tion 3 satisÞes Fq(�x;η,β,z1) Â

D
Fq(�y;η,β,z1) , and

T (q(·; η,β, z1)) = 1 + ε

β − ε >
1

β
>
1

α∗
,

where the inequalities follow from the construction of the function q(·; η,β, z1). To
Þnish the proof of this part we just have to deÞne t = 1/α and t∗ = 1/α∗ .

Proof of Corollary 3. It follows directly from expressions (5.3), (5.4), (5.5), (5.6)

and (5.13), and because t∗ = 1/α∗ .
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