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Abstract

This paper analyzes the linkages between the credibility of a target
zone regime, the volatility of the exchange rate, and the width of the
band where the exchange rate is allowed to fluctuate. These three con-
cepts should be related since the band width induces a trade-off between
credibility and volatility. Narrower bands should give less scope for the
exchange rate to fluctuate but may make agents perceive a larger proba-
bility of realignment which by itself should increase the volatility of the
exchange rate. We build a model where this trade-off is made explicit.
The model is used to understand the reduction in volatility experienced
by most EMS countries after their target zones were widened on August
1993. As a natural extension, the model also rationalizes the existence of
non-official, implicit target zones (or fear of floating), suggested by some
authors.
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CÆSAR: Cowards die many times before their deaths;
The valiant never taste of death but once.
Of all the wonders that I yet have heard,
It seems to me most strange that men should fear,
Seeing that death, a necessary end,
Will come when it will come.
W. Shakespeare. Julius Caesar, ACT2, scene 2.

1 Introduction
In the mid nineties, Obstfeld and Rogoff [26] predicted a world of widely float-
ing exchange rates, given the removal of controls to the international capital
mobility. In contrast, recent analyses on exchange regimes have highlighted
a common feature in exchange rate policies labeled as fear of floating : de jure
free floaters strongly intervene to soften the fluctuations of the nominal exchange
rate (see Calvo and Reinhart [9], Reinhart [27], Fischer [16] and Levy-Yeyati
and Sturzenegger [24]). Intermediate regimes seem to be defining the current
world so that completely fixed or fully flexible rates are rarely observed. The
general aim of this paper is to provide an explanation as of why countries have
found it optimal to choose this intermediate alternative.
For this purpose, we introduce a highly simplifying but useful analytical

starting point: any exchange regime is a particular case of a target zone. On
one extreme, fixed rates can be seen as target zones with band widths equal
to zero. On the other extreme, pure floating rates are equivalent to fluctuation
bands with a width tending to infinity. In between, dirty floats can be seen as
implicit target zones with finite bands while target zone regimes impose those
bands explicitly. Viewed in this manner, the choice of an exchange regime
consists on deciding the width of a band of fluctuation.
In particular, this paper analyzes the linkages between the credibility of a

regime, the volatility of the exchange rate and the width of the band where
the exchange rate is allowed to fluctuate. It has been argued that different
exchange regimes, that is, different band widths, trade off price stability with
monetary independence. In this trade off, one of the most important ingredients
are the beliefs that market participants have about the incentives of the central
bank to defend the band, and these beliefs themselves affect the behavior of
the exchange rate. More rigid systems, that is, narrower bands, impose ex-ante
limits to the fluctuation of the exchange rate but also agents may perceive a
higher risk of realignment in the future. These expectations should feed into
the behavior of the exchange rate which itself determines the probability of a
change in the system. Broader bands give more scope for the exchange rate to
fluctuate but markets may consider the likelihood of a realignment low. In this
paper, we analyze the incentives central banks have to renege from announced
regimes and compute the endogenous relation between the width of the band,
the volatility of the exchange rate and the probability of a change in the central
parity of a target zone.
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As an example, consider the experience with the European Monetary System
(EMS). This system was designed to foster stability of exchange rates among
European currencies. In the language of Giavazzi and Pagano [17], by tying
the hands of central banks, countries participating in the ERM could reach a
certain degree of credibility for their monetary policies due to the discipline
effect. Thus when, on August 3rd 1993, the EMS widened the band of fluctua-
tion for the exchange rates, from ±2.25% to ±15%, some analysts predicted the
demise of the EMS, given that the wider band could motivate higher volatility
of exchange rates.1 The wider band appeared as a contradiction at the very
moment when the Treaty of Maastricht was imposing severe convergence cri-
teria to EMU candidates. It seemed that the door was left open to access an
environment with more scope for monetary discretion, exchange rates instability
and larger inflation.
However, market participants and researchers have documented two related

stylized facts after August 1993: a fall in exchange rate volatility (see Obst-
feld [25]) and a substantial improvement in private beliefs about the long run
sustainability of the EMS. Gómez-Puig and García-Montalvo [18] estimate an
EMS credibility indicator, based on the Markov switching methodology. For the
post 1993 period, they find that credibility increased for most of the currencies.
Ledesma et alii [23], using a wide variety of credibility tests for the EMS, also
conclude that credibility increased after the widening of the bands.2

As surveyed in Stockman [30], proponents of narrow band target zones sug-
gest them as substitutes of a monetary commitment. Giavazzi and Pagano [17]
argue that exchange arrangements like the ERM of the EMS contributed to
import credibility for domestic monetary policies, because differential inflation
translates into real exchange rate appreciation, reducing the policy maker’s in-
centive to inflate. Examples of these narrow bands are abundant. A quick
glance into the recent regime classification of Reinhart and Rogoff [28] reveals
that most of the countries have at some point had an exchange arrangement
involving a band (see their Appendix III). They sample market-determined ex-
change rates for 153 countries from 1946 through 2001. Among these, the most
popular exchange rate regime has been the crawling peg or narrow crawling
band, which account for over 26 percent of the observations. In the Western
Hemisphere, explicit bands account for 42 percent of the observations.
On the other hand, proponents of flexible rates argue that the central bank

may loose valuable short run monetary independence with a pegged exchange
regime (see, among others, Svensson [35], Obstfeld and Rogoff [26] and Stock-
man [30]). A narrow target zone is simply one form of monetary policy rule and

1The Spanish Peseta and the Portuguese Escudo moved from a ±6% to a ±15% band.
2This also seems to be the perception shared by the European Central Bank [15], as

asserted by President Wim Duisenberg: “[...] The second way in which ERM2 will contribute
to a stable monetary environment within the EU is by limiting short-term exchange rate
volatility. As I have already mentioned, the widening of the fluctuation bands has reduced the
incentive for market participants to test the sustainability of the narrow margins. A two-way
risk arises as exchange rates move away from central rates, thereby discouraging speculative
attacks. The most recent experience is encouraging in this sense. In 1997, exchange rate
volatility among ERM currencies has been the lowest since 1992.”
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some institutional reforms or other monetary policy rules could be used alter-
natively. If an anti-inflation policy is not very credible inside the country then,
instead, why should market participants appreciate that the discipline imposed
by a narrow exchange regime will become a credible device outside?
From a theoretical point of view, explicit modeling of band widening has

received little attention. Bartolini and Prati [3] develop a model where the
central bank targets the exchange rate within a wide band in the short run
but attempts at keeping the exchange rate fluctuating in a narrow zone in the
long run. More recently, Chamley [10] has proposed a strategic game with
speculators and a central bank. Speculators learn about the possibility of a
successful attack by looking at the position of the exchange rate within the
band. The sustainability of a target zone regime increases by widening the
bands of fluctuation. In both models, the idea of sustainability refers to the
concept of survival time rather than credibility.
In the present paper, the concept of credibility is identified with the proba-

bility, perceived by the market, that the central bank will enforce defense mech-
anisms to keep the currency within the committed zone. Rather than trying to
predict the timing of the collapse of a target zone, as usual in the literature on
currency crises, we suggest a rational expectations equilibrium that allows us to
identify the degree to which the central bank defends the currency at the margins
of the zone. Our model follows the cost-benefit analysis proposed by Obstfeld
[25], where the central bank calibrates the opportunity costs from defending
relative altering the regime. Rational expectations allows us to check whether
the monetary authority has ex post incentives to defend the currency at a given
probability of defense. Thereby, credibility is endogenous in our model. Since,
in the absence of capital controls, sooner or later narrow band regimes suffer
currency crises, we will claim that the adoption of wide band target zones will
permit a substantial gain in credibility, enabling an environment for financial
and monetary stability.
Finally, the model is also used to further explore the idea of implicit bands

within official bands as estimated by Labhard and Wyplosz [21].3 These authors
suggest that European central banks were able to optimally fine tune their
desired degree of monetary independence after the August 3rd 1993 reform.
Their estimations of the implicit bands targeted by the monetary authorities are
reproduced in Table 1, in the column “Implicit bands”. Some countries kept on
holding a tighter band (Netherlands and Belgium), compatible with the former
±2.25% system, but for most of the countries the narrow band system was no
longer optimal. Hence, the ±15% regime served as a benchmark reference under
which all EMS countries were supposed to adjust the ranges of fluctuations for
their currencies (see Table 1).4 Apart from the August 1993 ERM case, Table
2 quotes some other examples of band widening from the mid nineties. Data
have been borrowed from Reinhart and Rogoff’s [28] Appendix III. It seems as

3 In the words of Calvo and Reinhart [9], we attempt to provide a rationale to the fear of
floating.

4Chung and Tauchen [12] and Chen and Giovannini [11] have also estimated implicit bands
for the narrow band period.

4



though these countries were searching for an optimal width. Current exchange
agreements then go from ±2.25 for the Danish Krone (versus the Euro), up to
±39.2% for the Israeli New Sheqel (versus a basket of currencies).

Tables 1 and 2 here

To capture this notion of implicit bands, we solve the model for a subgame
perfect equilibrium where the central bank is given a menu of alternative band
widths. Any of those bands produces an endogenous equilibrium credibility.
Backward induction then reveals market traders the cheapest regime, which in
turn signals the optimal band to be credibly committed by the central bank.
The next section sets up a target zone model and the definition of a ra-

tional expectation equilibrium. A computation exercise is carried out in the
third section. The results show that there is a trade-off between credibility and
volatility as the band width increases. The optimal band is also determined in
this section. The last section summarizes the most relevant results.

2 The model
The model represents a highly stylized dynamic stochastic general equilibrium
economy. It can be thought of as a reduced form version of more complicated
fully optimizing models. Time is discrete. First, consider an equation specifying
equilibrium in the money market:

mt − pt = ϕyt − γit + ξt, (1)

where mt is money supply, pt is the domestic price level of yt, a tradable good,
it is the domestic interest rate of a one period of maturity bond, and ξt is some
shock to money demand. They are all expressed in logs, with the exception
of the interest rate. Parameters ϕ and γ are both positive: money demand
increases with output because of a transaction motive and there is an implicit
liquidity preference behavior, meaning that money can be a substitute for a
bond that returns a nominal interest it.
Let xt denote the log of the nominal exchange rate, expressing the price

of one unit of foreign currency in terms of domestic currency. The (log) real
exchange rate is given by

qt = xt − pt + p∗t , (2)

where p∗t is the foreign price (variables with star will denote the foreign ana-
logue).
Call dt ≡ it − i∗, the interest rate differential, where i∗ is the foreign (con-

stant) rate, and assume perfect capital mobility, risk aversion and the uncovered
interest rate parity condition (UIP)

dt = Et {xt+1 − xt}+ rt, (3)
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where Et is the expectation operator conditional on information available at
time t. The exogenous state variable rt represents the foreign risk premium,
governed by a first order Markov process

rt = rt−1 + εt. (4)

The expected rate of depreciation must compensate for the interest rate differen-
tial plus the foreign premium. The white noise {εt} is supposed to be Gaussian,
εt ∼ N

¡
0,σ2

¢
, for convenience.5

Using (2), (3) and (1) one obtains

xt = ft + γEt {xt+1 − xt} , (5)

ft = mt + vt,

vt = θt + γrt,

θt = qt − p∗t − ϕyt + γi∗ − ξt.

Total fundamentals ft amount to an endogenous process, mt, plus an exogenous
process, vt. We will assume that both the central bank and traders can observe
the realization of {vt}.
The monetary authority must choose the path for money {mt} so as to

maximize its preferences subject to the evolution of {vt}. The objective is
to set up these preferences to capture the degree of monetary independence
that arises under alternative exchange rate regimes. As in Svensson [34], the
concept of monetary independence is associated with the interest rate variability.
At one extreme, and in the absence of realignments, a fixed rate eliminates
monetary independence. At the other extreme, a managed float regime provides
the highest degree of independence. In between, a target zone gives some scope
to focus the monetary policy on domestic problems. To capture this idea, the
central bank (henceforth, CB) preferences are modeled to evaluate the trade-off
between interest rate variability versus exchange rate variability

J =
1

2
E0

( ∞X
t=0

βt
h
(dt − ρ0)

2
+ λ (xt − c0)2

i)
. (6)

The long run desirable target for the interest rate differential is ρ0, that we will
later assume as zero, for convenience. The target for the exchange rate is the
central parity c0 around which deviations are punished by the relative penalty
λ. The factor β ∈ (0, 1) is a time discount rate.

5The foreign risk premium plays a key role in the current paper. In general, UIP does not
hold (see Ayuso and Restoy [1]). Conventional target zone models consider that deviations
from UIP are negligible in target zones (see Svensson [33]). A common practice in some
credibility tests of target zones relies in this idea (v.g. the simplest test, see Svensson [31],
and the drift adjustment method of Bertola and Svensson [8]). However, Bekaert and Gray
[6] find that the risk premia in a target zone are sizable and should not be ignored. They
argue that this might be the reason of why the credibility tests run on EMS at the beginning
of the nineties failed in anticipating the 1992-93 turbulences.
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We think of a very short maturity term for the bond in the UIP, say a few
days, a week or a month at most. The idea is that the CB controls some mone-
tary aggregate {mt} to target {dt, xt}. Output realizations and real fluctuations
are observed with some delay, and not available by the time monetary policy
is decided so, the only available information at any period is {θt, rt}. From (3)
and (5) it is easy to show that mt will respond one to one to the shock θt and
the problem reduces to deciding how to split the shock rt between dt and xt.
In what follows, the target zone regime will be characterized by the triple

{λ ≥ 0, w ≥ 0,α ∈ [0, 1]}. The first element is related to the preferences in (6).
The number w is the band width. The last term α is the probability that the CB
defends the currency when it is outside the band and measures the credibility
of the exchange regime. We suppose that, within the bands, the CB defends
the currency with probability 1. As stated in the introduction, the purpose of
this paper is to construct a model able to generate a consistent target zone
solution, in the sense that the CB finds it optimal to defend the target zone at
the margins by probability α. There are not further incentives to renege from
the target zone ex-post.
The exchange rate is always determined as a function of the shock rt. At

any time t, the timing of the game is as follows:

1. The shock rt is realized.

2. If for that value of the shock the exchange rate should be outside a band
[ct − w, ct + w], for instance, say it is above the upper limit ct + w, the
CB can do any of two actions:

• It defends the currency with probability α. This means that the
exchange rate is pegged at the edge of the band, xt = ct + w, and
the central parity is not altered, ct = ct−1.

• It realigns the currency with probability (1− α). In this case, the
central bank devalues the central parity by µ, i.e. ct = ct−1+µ, and
situates the exchange rate at xt = ct−1 + max {w, µ}, that is, the
rate jumps to the new central parity if the realignment rate is higher
or equal than the width, µ ≥ w. Otherwise, with overlapping zones,
µ < w, the parity is altered by µ but the exchange rate remains at
ct−1 + w. This condition is necessary in order to avoid jumps to the
interior of the band, i.e. an appreciation under a devaluation.

3. If the realization of the shock makes the exchange rate be within the target
zone, the CB solves a minimization problem. The process is as follows:

• The central parity is left unaltered: ct = ct−1.
• Forward looking agents form expectations Etxt+1.

• For given {Etxt+1, rt, ρt, ct}, the CB chooses {xt, dt} by minimizing
the loss (6) subject to the arbitrage condition (3), the relation in (4)
and the additional restriction xt ∈ [ct − w, ct + w].
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4. Finally, for given shock θt in the money demand equation (5), the CB
supplies the optimal quantity of money mt supporting the pair {xt, dt}.

In the loss function (6), the variable ρt has been defined as the long run
desirable target for the interest rate differential. The timing that has just been
described implies that the exchange rate is a function of the variable rt, the
foreign risk premium, that must be fluctuating within a zone before an inter-
vention is called for. Since rt is a return on an asset, it takes the form of an
interest rate. Therefore, the zone for this risk premium is an interval centered
at ρt. In fact, the rate of depreciation of xt uniquely depends on the difference
of rt from ρt. That is to say, when rt hits the upper limit of its zone, the ex-
change rate hits also its upper limit, xt = ct+w. Let u(rt− ρt) be the function
linking the exchange rate to the fundamental process rt within the band. For
the exchange rate to belong to [ct − w, ct + w], the shock must be inside another
band [ρt − r, ρt + r]. At rt = ρt ± r two level conditions must be satisfied

u (−r) = −w, (7)

and

u (r) = w. (8)

When a devaluation comes about (see step 2, bullet 2 in previous timing), the
central parity is devalued by µ, and the new band for the fundamental is updated
(see appendix A.1 for an explanation of how the process {ρt}∞t=0 is updated).
In what follows, consider that the starting central parity is c0 = 0 and the

starting center is ρ0 = 0. The first order condition for values of rt ∈ [−r, r] is
(1 + λ)x (rt) = rt +Et [x (rt+1)] . (9)

The function x (rt+1) satisfies

x (rt+1) = ct


+max {w, µ} if rt+1 > r with probability 1− α
+w if rt+1 > r with probability α
+u (rt+1) if rt+1 ∈ [−r, r]
−w if rt+1 < −r with probability α
−max {w, µ} if rt+1 < −r with probability 1− α.

(10)

The unknown continuous function u (rt) represents the CB’s best response when
the risk premium lies within its band [−r, r]. Outside of it, condition (9) does
no longer hold and the trade-off is not optimal.6

6The assumption that the exchange rate can only jump when a realignment occurs simplifies
matters. Bekaert and Gray [6] construct an empirical model where jumps can be taken at
any point within the zone (“several within-the-band jumps are larger than several realignment
jumps”). There are other alternatives to model the realignment rate. For instance, the setting
in Bertola and Caballero [7] is similar to ours, where agents perceive a constant size of the
realignments, and the exchange rate takes a jump to the new central parity at realignments.
Ball and Roma [2] and Svensson [33] assume that changes in the central parity follow a Poisson
process.
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In order to find out the particular form of the function u (rt), the band for
the fundamental [−r, r] must be computed, given the level conditions (7) and
(8). This guarantees continuity of u (rt) from expression (10). Given that the
first order conditions are only fulfilled in the interior of the bands, (9) can then
be rewritten as

(1 + λ)u (rt) = rt +Et [x (rt+1)] . (11)

Forward recursion is used to solve for u (rt) with the first order condition (11)
subject to (10). Appendix A.2 provides all the details for computation of the
solution.
From condition (11) and (3), it is straightforward to see that the model

produces a positive relation between the exchange rate of depreciation within
the band and the interest rate differential:

dt = λ [u (rt − ρt)− ct] + ρt, (12)

Outside the band, the trade-off is not optimal and expression (12) does not hold.
As an illustration, consider the following particular case depicted in figure 1.

Further details of the properties of the function u (rt) can be found in Rodríguez
and Rodríguez [29]. We consider a preference parameter λ = 0.5 and a standard
deviation σ = 0.002. As in the EMS case, we select a width w = ±2.25%, whose
expected realignment rate is given by µ = ±4.5% (these values are conveniently
justified in the following section). The exchange rate function is calculated for
five values of the probability of defense, α: 0, 14 ,

1
2 ,

3
4 and 1. These functions

are positively sloped for rt. The higher is α, the flattest the curve, that is, the
exchange rate response to rt is smoother, the bigger is credibility. Hence, a
credible band helps stabilize the exchange rate within the zone. For values of α
close to 0, the slope of that function increases, implying that the exchange rate
is more sensible to variations in the risk premium. Then, volatility will increase
as long as α decreases.

Figure 1 here

2.1 The Concept of Equilibrium

The rational expectations equilibrium of this model amounts to finding a fixed
point for the probability of defense, α. The idea is as follows. For a given
set of parameters (λ, σ, and w), and a prior about the probability α, market
participants may compute the ex-post incentives the central bank has to renege
from the target zone regime. To estimate those incentives agents calculate the
losses for the central bank derived from defending the zone as compared to its
losses from realigning the band for any possible realization of the shock. Then,
they compute the probability of the realizations for which losses from defending
are smaller than those of realigning. The rational expectations equilibrium
imposes that this probability should be equal to α. If it is not equal, market
participants deduce that they were not estimating consistently the probability
of defending and update it consequently.
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To understand how this equilibrium is computed consider the following.
Imagine that at some point in time t = τ the shock exceeds one of its bound-
aries, say the upper one, rτ = er ≥ ρτ + r. The central bank has two options.
If the currency is defended, neither the central parity cτ nor the center ρτ are
altered, so cτ = cτ−1 and ρτ = ρτ−1. Yet, for convenience, we assume that both
cτ and ρτ start at 0. Then, the current exchange rate is set at xτ = cτ +w, and
the interest rate differential is given by

d (er) = Eτ [xτ+1 − xτ ] + rτ = E [x (rτ+1) |rτ = er]− (cτ + w) + er. (13)

Hence, the CB pays a loss from then on of

LDτ (er) = 1

2

h
d (er)2 + λw2

i
+
1

2
EDτ

 ∞X
j=1

βt
¡
d2τ+j + λx2τ+j

¢ , (14)

where EDτ is the conditional expectation operator, given that the CB defends
at time t = τ .
Instead, if the CB decides to devalue, the central parity and the exchange

rate are moved to xτ = cτ = cτ−1+µ, and the new center for the risk premium
is moved to ρτ = er. From (12), the interest rate differential will be given by

d (er) = er. (15)

Then, the CB receives a loss

LRτ (er) = 1

2

£er2 + λµ2
¤
+
1

2
ERτ

 ∞X
j=1

βt
¡
d2τ+j + λx2τ+j

¢ , (16)

where ERτ is the conditional expectation operator, given that the CB realigns
at time t = τ .
These two values lead us to define, for any value er, a cost function from

defending as

G (er) = LDτ (er)− LRτ (er) . (17)

If, for some r /∈ [−r, r], G (r) is negative, the costs from realigning will overcome
that from defending and the CB will keep the exchange rate at its primitive
margins. Otherwise, when G (r) > 0, realigning will be preferred to defending
for that particular value of the shock. Indifference stands for the case G = 0.
Since the objective function is quadratic, the function G (r) is an increasing
function of the shock r, that is, the costs from defending relative to the costs
from realigning increase as the value of the shock increases. Notice the relative
costs of defending are only conditional on the value of the shock; they do not
depend on previous costs. So, once the shock r has been reached, the function
G (r) determines whether it is preferable to defend or to realign. That is why we
do not write the subindex τ anymore. Given the monotonicity of the function
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G (r), there must be a value of the risk premium, call it r∗, such that for all
rt > r

∗ it is preferable to realign, that is, G (r) > 0 for all r > r∗. Then, market
participants can determine the probability of reaching such a value which will be
related to the probability of defending. With this information, they can evaluate
whether the assumed α, the subjective probability of defense, was correct or not.
Furthermore, for given r0 = ρ0 = 0, denote by ζ (r∗) the probability that a

random walk stream, {rt}∞t=0, always wanders inside a moving corridor of width
2r∗ ≥ 0, centered at {ρt}∞t=0, i.e.

ζ (r∗) = Pr
£©
rt − ρt−1 ∈ [−r∗, r∗]

ª∞
t=1

|r0 = 0
¤
, (18)

and analogously define ζ (r) as

ζ (r) = Pr
£©
rt − ρt−1 ∈ [−r, r]

ª∞
t=1

|r0 = 0
¤
,

such that r∗ ≥ r > 0, and where process {ρt}∞t=1 is updated as follows

• ρt = ρt−1, for −r∗ < rt − ρt−1 < r∗.

• ρt = rt, otherwise.
7

Notice that the function ζ (r∗) is monotonically increasing. This implies that

lim
r∗→∞ ζ (r∗) = 1,

lim
r∗→0

ζ (r∗) = 0.

These concepts lead us to a rational expectation solution. Intuitively, agents ob-
serve that there exists a shock making the CB indifferent between defending and
realigning. Equilibrium is found when the proportion of times that this shock
is perceived to occur equals the proportion of times the currency is observed to
be defended. A more formal equilibrium concept follows:

Definition 1 : (Rational expectations equilibrium) A target zone system
defined by the parameters (σ,λ, w,α) is said to be a rational expectation equi-
librium, if there exists a risk premium |r∗| ≥ |r|, such that

G (r∗) = 0, (19)

and

ζ (r∗)− ζ (r)

1− ζ (r)
= α, (20)

where r is the implied band width of the zone.

7Appendix A.1 reports further details on how the center ρt is updated under a more general
case when the realignment rate is not necessarily higher than the band width.
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Condition (19) makes agents perceive that the CB is indifferent between
realigning or defending. Condition (20) implies that market traders perceive
the CB is defending with a probability α whenever a marginal intervention is
called for. On the one hand, the central bank will not realign as long as the
shock is not larger than r∗ in absolute value which happens with probability
ζ (r∗). On the other hand, the market anticipates that realignment does not
occur if the risk premium stays with its band, which happens with probability
ζ (r), or if the shock leaves its band and the central bank defends the target
zone which happens with probability α [1− ζ (r)]. Obviously, in equilibrium
these two probabilities of defending should be equal, that is,

ζ (r∗) = ζ (r) + α [1− ζ (r)] ,

and solving for α gives condition (20).
Imagine that condition (20) is matched, but condition (19) is not. For in-

stance, imagine there is a value for r, say er, such that G (er) < 0 and [ζ (er) −
ζ (r)]/[1− ζ (r)] = α. Market participants perceive that the central bank would
be strictly better off from defending and letting the risk premium to deviate
further from its center. Hence, there is still room for the risk premium to be
higher, say er +∆ > er, before the central bank generates a devaluation. Since
the function ζ (r) is monotonically increasing, this means that

ζ (er +∆)− ζ (r)

1− ζ (r)
> α, (21)

that is, the perception by the market of the proportion of times the currency will
be observed to be defended, out of the margins of the zone, should be higher
than α. Agents will revise their estimation of the probability of defense by
increasing their subjective probability of defense, say to eα > α. With a larger
value of α, the function u(rt − ρt) becomes flatter and the limit of the band
for the risk premium, r, larger. Given that ζ (er +∆) < 1, this movement of r
reduces the left-hand side of (21). Notice, the response of the market increasing
α moves the economy towards the equilibrium by closing the gap in (21).

3 Results
Since the model does not permit a closed form solution, numerical alternatives
are given as tentative answers. This requires to rely results on some prespecified
parameters. This section is organized in four parts. The first justifies the
parameters for the numerical computations. The second part use the previous
model to endogenize the credibility of the target zone, as represented by the
probability of defense α. Estimations of conditional volatilities are given in the
third subsection. The final subsection addresses to the question of determining
the optimal band.

12



3.1 Parameters

The following values for the parameters are used in the numerical exercises of
this section. We think of a month as the time frequency. As in Svensson [34],
the time discount factor is set to β = 0.90

1
12 . We use this value to ease the

calculations but the main results of the paper do not hinge on it.
Three bands are chosen, w = ±2.25%, ±6.00% and ±15%, the official widths

experienced in the ERM. For the last case, it is well known that EMS monetary
authorities targeted implicit widths much narrower than the ±15% officially
announced, as estimated by Labhard and Wyplosz [21] (see also Bartolini and
Prati [3]). In fact, when the Spanish Peseta and the Portuguese Escudo were
realigned on March 6th 1995, the edges of the zone had not been reached. In
both cases, the realignment rate (µ = 7.5% and 3.5%, respectively) were smaller
than the official widths.
Appendix B suggests some estimates for σ and µ. A VAR estimation lead to

conclude that σ = 0.01 can be a reasonable value for this variance. This value
parallels some other estimations for the risk premium standard deviation. The
value of the constant realignment rate µ is estimated depending on the band
width, w.8 Thus, we conclude that µ = ±4.5% and µ = ±6.3%, for widths
w = ±2.25 and w = ±6%, respectively, are consistent with the EMS history.
For the wide band ±15% we use µ = ±7.5%, as the Spanish Peseta was so
devalued in March 6th 1995.
Finally, regarding the preference parameter λ, we have used a grid ranging

from 10−8 to 1.

3.2 Credibility

The implementation of the rational expectation equilibrium goes as follows. For
particular values for σ, λ and w, we guess the equilibrium probability of defense
α, and solve the model, that is, we find the function u, and the bounds for
the risk premium band, r. Second, we compute the value of er from expression
(20). Third, we simulate N = 1000 runs of T = 500 observations for the
shock starting at the value er. Fourth, the relative costs of defending versus
realigning are computed for each run in the simulation so the cost function
G (er) is approximated as the arithmetic mean over the N = 1000 simulated
runs. If the estimated G (er) is positive (negative), we scale down (up) the initial
value of α and repeat the process until convergence is reached (see appendix C
for the details of this iterative process).
Table 3 collects the equilibrium values of α for different combinations of

the preference parameter λ, and the three widths considered. In our search of
values, we find that λ should be smaller or equal than 0.1 in order to produce

8Expected realignment rates are usually estimated through some measure of accumulated
competitiveness losses, v.g. the growth rates of the CPI, the Industrial Price Index or the
Unit Labor Cost Index. In general, devaluations are not sufficient to dampen for the real
appreciation (Giavazzi and Pagano [17]). By estimating different realignment rates for the
different band widths, we simply want to extract some figures that reasonably describe the
ERM history.
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equilibrium values of α strictly in the [0, 1] interval. In complementary exercises
(not reported here), when σ has been increased, this range for λ has increased:
when the risk premium suffers a bigger volatility, a central bank needs a higher
λ in order to preserve a certain degree of credibility.
The main result to be highlighted from Table 3 is that the equilibrium proba-

bility of defense α increases as the band widens. The market perceives that this
situation might discourage the monetary authority to renege from the target
zone arrangement. Thus, credibility increases with the band width. Another
interesting result is that the system is more credible, the larger the preference
weight attached to the variability of the exchange rate, λ. If the central bank
exhibits in its preferences a strong targeting of the exchange rate around the
central parity, the exchange rate variability will be lower. The preference pa-
rameter λ punishes any deviation from the central parity. Then, the central
bank finds it consistent to commit the target zone arrangement with a higher
probability.
Although the quantitative outcomes of this exercise are highly sensible to the

realignment rate µ, the qualitative results should remain the same independently
of the particular value of µ or any other parameter. Here, we are assuming that
as the band gets wider, the realignment rate increases too which increases the
cost of changing the central parity and makes the system more credible. The
choice of making µ dependent of the width of the band has been made to match
what we observe in the data. However, if µ were constant the same effects
would appear. This is due to the fact that as the band widens, the probability
of incurring in the fixed costs of realigning decrease.

Table 3 here

3.3 Volatility

Is the model consistent with the experience of the EMS? As pointed out in
the introduction, after the widening of the bands in 1993, researchers found
that volatility of the exchange rate had decreased (see Gómez-Puig and García-
Montalvo [18], Ledesma et alii [23] and Ayuso et alii [1]). To see this, we
compute the standard deviation of the exchange rate, for t = 1, 2...36 periods
ahead, conditional on information available at time 0

σx,t =

r
E0

n
[xt −E0 (xt)]2

o
. (22)

If we consider that the starting conditional value for the risk premium is r0 = 0,
it is easy to show that the conditional expectation is E0 (xt) = c0 = 0. The
standard deviation for the interest rate differential has a similar form:

σd,t =

r
E0

n
[dt −E0 (dt)]2

o
. (23)

Again, for r0 = 0, it is easy to show that the conditional expectation is E0 (dt) =
ρ0 = 0.
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Figure 2 shows the conditional standard deviation in (22) for the different
time horizons and the three band widths used in the EMS. The value used for
λ is 0.0001. We observe that the volatility of the exchange rate 19 periods
ahead in the system with the width of ±15% is smaller than the one with the
zone of ±2.25%. The reason for this result is in Table 3 where we find that
the probability of a realignment in the first system is 85 percent while with
the narrow band is only 23 percent. We also observe that these reductions in
volatility from moving to the wide band increase as the time horizon is larger.
With a larger probability of realignment future discrete jumps in the exchange
rate are more likely.
Figure 3 presents the same computations with λ = 0.1. With this value

for the central bank preferences wider bands present higher volatility. In this
case, it is in the interest of the central bank to foster credibility and market
participants know that the monetary authority will be likely to defend the band
often. In fact, Table 3 shows that all bands are equally credible. The only
difference stands for the different reaction of the exchange rate to movements in
the shock. This response is given by the slope of the function u which is smaller
for narrower bands.
Finally, Figure 4 presents the volatility of the interest rate differential for

λ = 0.0001. We observe this volatility decreases with the widening of the band.
A broader band allows for more monetary independence, that is, the central
bank enjoys more degrees of freedom to adjust the nominal interest rate to
domestic conditions. With a wider zone the exchange rate may now absorb
more variability from the risk premium shock. At the same time, a wider band
is also more credible, this helps stabilizing forward looking expectations and,
through the UIP, the interest rate differential.

Figures 2-4 here

3.4 The optimal band width

This subsection explores the idea of Labhard andWyplosz [21] about non-official
bands inside official bands. Their estimates suggest that, while the widths of
the target zones were widened on August 1993, most of EMS countries found
it optimal to target a tighter band than ±15% (see Table 1): The Netherlands
kept on pursuing a close targeting to the DM, while Belgium enforced a band
similar to that of the previous period. The rest of countries preferred to gain
more degrees of freedom for their monetary policies, probably due to the need
of meeting the convergence criteria imposed by the Maastricht Treaty.
The exercise of this subsection rationalizes the choice of this nonofficial bands

by solving the model for a subgame perfect equilibrium. Given a value for the
parameters λ, β, and σ, an equilibrium probability α can be found for any
band width w ≥ 0. This defines a continuum of equilibria within which one
can compute the ex-ante costs from such strategy as measured by (6). Any of
those widths conforms the strategy set of the CB. A credible Nash equilibrium
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is determined by choosing the strategy that returns the minimum ex-ante cost.
This is the optimal band width.
In order to perform this exercise, a word has to be said about the rate of

realignment. At the beginning of this section, we suggested a positive correlation
between the band width and the realignment rate, on the basis of EMS history.
We mapped the value of µ = 4.5% to w = ±2.25%, and µ = 6.3% to w = ±6%.
In order to keep the same schedule in the parameters, we make the realignment
rate vary linearly with the band matching these previous points. This takes us
to the function

µ = 0.0342 + 0.48w.

Denote J(w) the costs derived from the rational expectation equilibrium
associated with the width w, given the rest of parameters. The optimal band
width is found as

w∗ ≡ argmin
w
J (w) .

Let α∗ denote the equilibrium probability of defense associated with the optimal
band w∗. These steps have been repeated for thirteen different values of λ for
a grid ranging from 0.0008 to 0.01.
Table 4 includes the equilibrium values for the optimal band and the associ-

ated probabilities of defense α∗ for each of the values of λ. As the central bank
dislikes more the volatility of the exchange rate (for large values of λ), the op-
timal band becomes smaller at the same time that more credible. In this sense,
the August 3rd 1993 reform can be viewed as a benchmark regime within which
all the EMS countries could optimally adjust their targeted zones where the
exchange rates were allowed to fluctuate. An important corollary of this result
is that, while this optimal fine-tuning of bands can be achieved when the official
band is ±15%, the official narrow width period of ±2.25% could only make feel
uncomfortable those EMS currencies who wished to use a bigger optimal degree
of monetary independence. The column of Table 1 labelled “Maastricht” col-
lects the average number of criteria not satisfied by the countries in the sample
of Labhard and Wyplosz [21] from 1993 until 1996. With the exception of Ire-
land we see that countries that decided to let the exchange rate to fluctuate in
wider bands were the ones that did not satisfy a larger number of criteria and
therefore needed to make more adjustments in their domestic economies.9

Table 4 here
9 Ireland had held a long tradition (from 1826) of anchoring the Irish Pound versus the

currency of the U.K., its main trading partner. As the U.K. left the EMS discipline on
September 1992, the economic gains from participating in the ERM could only come through
a credible enough arrangement. The broad implicit band of Table 1 allowed for accommodation
of the strong depreciation of the British Pound (BP) versus the Deustche Mark by the end
of 1994 and early in 1995 (see Ledesma et alii [22]). In contrast, the sharp depreciation of
the BP on September 1992, in combination with the tight ±2.25% official band, led the Irish
authorities to strongly realign on 1st February 1993 (+11%).
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4 Conclusions
The choice of an exchange regime can be viewed as the choice of a band width
of a target zone. This apparently strong assertion has been the guiding line of
the current paper. In fact, we observe that target zones are the most common
exchange agreements in recent history. The most important currencies in the
world are traded under regimes with bands of fluctuation, officially or unoffi-
cially. The importance of the band width is twofold: first, it determines the
degree of monetary independence, that is, the degree of flexibility the central
bank has in order to adapt monetary policy to home conditions and second,
it determines the credibility of the exchange regime. Both items are heavily
related.
In this paper, it has been suggested a possible explanation of why wide bands

could be more credible and less volatile than narrow bands, as reported by the
empirical literature on the EMS. There are two opposite forces when moving
to a wider band. First, we get closer to the free float which increases volatility
but, second, the credibility of the band may increase and this, in turn, reduces
volatility. At the same time, a wider band allows more room for the central
bank to use the interest rate. By endogenizing the probability of defense we
have showed that a target zone can gain in credibility by widening the band
width. Thus, our results support the arguments of the proponents of flexible
exchange rates: the central bank may not only reap the benefits from monetary
independence but also may take advantage in credibility by widening the band
width.
However, this widening needs not lead to one of the extreme regimes, that

is, the free floating. Our model has also a normative implication that serves
as a valid rationale for the estimates of implicit bands, found by Labhard and
Wyplosz [21], or for the fear of floating, as dubbed by Calvo and Reinhart [9].
Officially, countries can declare themselves as floaters within a broad band, but
market participants may appreciate a fear of floating that leads the central bank
to target an unofficial implicit band. Hence, that fear is rational.

A Solution of the Target Zone
In this appendix we show how to make the computations for the solution of the
target zone regime. Forward recursion in the first order condition (9) is used to
solve for u (rt) subject to (10). Let the expected rate of depreciation out of the
band be given by

δτ ,τ−1 = [αw + (1− α)max {w, µ}] (24)

× [Pr (rt+τ > r|rt+τ−1)− Pr (rt+τ < −r|rt+τ−1)]
Forward iteration of (9) leads to the following general solution

u (rt) =
rt
1 + λ

+
1

1 + λ

∞X
τ=1

F [rt+τ |Fτ ]
(1 + λ)−τ

+
∞X
τ=1

F [δτ ,τ−1 |Fτ−1 ]
(1 + λ)−τ

, (25)
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where the sequence Fτ≥0 represents filtered information sets of the next form:
F0 = {rt} , (26)

Fτ≥1 = {{rt+n ∈ [−r, r]}τn=1 , rt} . (27)

On the other hand, the components in (25) are given by:

F [δ1,0 |F0 ] = [αw + (1− α)max {w,µ}] (28)

× [Pr (rt+1 > r|rt)− Pr (rt+1 < −r|rt)]

F [rt+1 |F1 ] =
Z r

−r
rt+1φ (rt+1|rt) drt+1, (29)

for τ = 1, and

F [δτ ,τ−1 |Fτ−1 ] =
Z r

−r
...

Z r

−r
δτ ,τ−1φ (rt+τ−1, ..., rt+1|rt) drt+τ−1...drt+1,

(30)

F [rt+τ |Fτ ] =
Z r

−r
...

Z r

−r
rt+τφ (rt+τ , ..., rt+1|rt) drt+τ ...drt+1, (31)

for τ = 2, 3, ..., where

φ (rt+τ , ..., rt+1|rt) =
¡
2πσ2

¢−τ/2
exp

"
−1
2σ2

τX
n=1

(rt+n − rt+n−1)2
#
. (32)

This general solution is consistent with (9) and (10). In order to determine a
particular solution, it is necessary to identify the value of r for which u (r) = w.

A.1 Updating of the center ρt

The center ρt signals the value for which the fundamental rt makes the exchange
rate equal the central parity. This center ρt is updated as follows. For values
of rt belonging to its band, the regime is not altered. Thus, nor ct nor ρt are
moved. Now consider a shock that exceeds its upper band, rt > r, and the CB
decides to devalue. Then, we know that the central parity jumps at ct = ct−1+µ,
and the exchange rate is pegged at xt = ct−1 +max {w, µ}. At this particular
moment, the depreciation rate within the new band is xt− ct = max {w, µ}−µ.
The new center ρt compatible with this situation is to set

ρt = rt − δ, (33)

where δ denotes the value that meets the following condition:

u
¡
δ
¢
= max {w, µ}− µ. (34)
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• If w ≤ µ, the exchange rate jumps and equals the new central parity, and
the depreciation within band is 0. Then, δ = 0 and the new center is
ρt = rt.

• If w > µ, the exchange rate equals its own previous upper limit, and the
depreciation is w − µ > 0. The new center is ρt = rt − δ.

When the shock exceeds the lower bound, rt < −r, the new center is pegged
at

ρt = rt − δ. (35)

A similar condition arises to determine δ:

u (δ) = −max {w, µ}+ µ. (36)

Notice that u (δ) = −u ¡δ¢, then δ = −δ. Again, when −µ < −w, we have that
δ = −δ = 0.

A.2 A numerical approximation

The general solution (25) involves a collection of integrals where only (28) and
(29) enjoy an explicit form. Numerical solutions are requested for the remaining
ones. Here, we propose a method that discretizes variable rt onK values (K ≥ 3
odd) within the interval [−r, r] as

r = r1, r2, ..., rK , (37)

r1 = −r,
rk = rk−1 + h, (38)

h = 2r/ (K − 1) > 0, (39)

rK = r,

rK+1
2

= 0,

In practice, we have used K = 101.
Let P, Q, R, S and T be row vectors (1×K), adopting the following form

P1 = Φ

µ−r + h/2− rt
σ

¶
− Φ

µ−r − rt
σ

¶
(40)

Pk = Φ

µ
rk + h/2− rt

σ

¶
− Φ

µ
rk − h/2− rt

σ

¶
PK = Φ

µ
r − rt
σ

¶
− Φ

µ
r − h/2− rt

σ

¶
with rt given and
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Qk = 1− Φ
µ
r − rk
σ

¶
− Φ

µ−r − rk
σ

¶
, (41)

Rk =

·
Φ

µ
r − rk
σ

¶
− Φ

µ−r − rk
σ

¶¸
rk + (42)

σ

·
φ

µ−r − rk
σ

¶
− φ

µ
r − rk
σ

¶¸
,

for k = 1, 2, ...,K, and

T = [αw + (1− α)max {w, µ}]Q (43)

where φ and Φ represent, respectively, the Gaussian pdf and cdf.
For the first period ahead, and only for this period, integrals (28) and (29)

have explicit form:

E [δ1,0 |F0 ] = [αw + (1− α)max {w, µ}]
·
1− Φ

µ
r − rt
σ

¶
− Φ

µ−r − rt
σ

¶¸

E [rt+1 |F1 ] =

·
Φ

µ
r − rt
σ

¶
− Φ

µ−r − rt
σ

¶¸
rt

+σ

·
φ

µ−r − rt
σ

¶
− φ

µ
r − rt
σ

¶¸
.

For the second period ahead, a numerical approximation is given by

E [δ2,1 |F1 ] = TP 0,
E [rt+2 |F2 ] = RP 0.

This implies that the value of the integrals at t+2 is determined for any possible
mean at t+1, rt+1 ∈ [−r, r], and any of these means is weighted by a probability
P , given a starting value rt at t.
The loop becomes harder as the period ahead increases over three. In order

to solve this problem, we develope a backward recursion algorithm, for which
the last period integral is firstly solved and then proceed backward up to the
first one. Thereby, consider the following non negative matrix M ∈ RK×K

M1,l = Φ

µ−r + h/2− rl
σ

¶
− Φ

µ−r − rl
σ

¶
,

Mk,l = Φ

µ
rk + h/2− rl

σ

¶
− Φ

µ
rk − h/2− rl

σ

¶
,

MK,l = Φ

µ
r − rl
σ

¶
− Φ

µ
r − h/2− rl

σ

¶
,
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for k, l = 1, 2, ...K, with the following properties: the sum over each column
gives a row vector mc ∈ R1×K , with all its components lying within the (0, 1)
interval

mc (l) =
KX
k=1

Mkl =

Z r

−r
φ (s|rl) ds ∈ (0, 1) (44)

for l = 1, 2, ...,K. The proof follows trivially. This property is sufficient to
verify the Hawkins-Simon condition (Brauer-Solow Theorem).
Matrix M contains the transition probabilities in the intermediate periods

from τ up to τ + 1, within the interval [−r, r] and for any conditional mean
belonging to [−r, r]. Thus, the solution for the third period is given by

E [δ3,2 |F2 ] = TMP 0,
E [rt+3 |F3 ] = RMP 0.

Again, the value of the integrals are first determined at t + 3 for any possible
mean at t+ 2, rt+2 ∈ [−r, r], given by the columns of M . The vector P closes
the calculation for any possible mean at t+1, rt+1 ∈ [−r, r], for given a starting
value rt.
For τ = 2, 3, ..., further generalization gives a sequence:

E [δτ ,τ−1 |Fτ−1 ] = TMτ−2P 0,
E [rt+τ |Fτ ] = RMτ−2P 0.

Plugging these values into (25), one obtains

u (rt) =
rt
1 + λ

+
E [rt+1 |F1 ]
(1 + λ)2

+
E [δ1,0 |F0 ]
1 + λ

(45)

+
1

1 + λ

∞X
τ=2

RMτ−2P 0

(1 + λ)
τ +

∞X
τ=2

TMτ−2P 0

(1 + λ)
τ .

Let the vector of eigenvalues be given by η (M), and call η∗ (M) the Frobe-
nius root, i.e. the maximum eigenvalue. From (44) we know thatmc (l) < 1, this
is a sufficient condition to verify the Hawkins-Simon condition (see Brauer-Solow
Theorem). In turn, verification of the Hawkins-Simon condition implies that
η∗ (M) < 1, (see Hawkins and Simon [19] and [20]). Then, matrix (I −M)−1
exists, it is non negative and can be written as

(I −M)−1 =
∞X
j=0

M j

This gives rise to a convenient simplification

M =
∞X
τ=2

(1 + λ)
−τ
Mτ−2 =

1

1 + λ
[(1 + λ) I −M ]−1 .
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The general solution becomes

u (rt) =
Ω (rt)

1 + λ
+∆ (rt) , (46)

with

Ω (rt) ≡ rt + E [rt+1 |F1 ]
1 + λ

+RMP 0,

∆ (rt) ≡ E [δ1,0 |F0 ]
1 + λ

+ TMP 0.

Application of level conditions (7) and (8) gives the particular solution

Ω (r)

1 + λ
+∆ (r) = w.

Finally, the exchange rate expectation is

Etxt+1 =
∞X
τ=1

F [rt+τ |Fτ ]
(1 + λ)τ

+ (1 + λ)
∞X
τ=1

F [δτ ,τ−1 |Fτ−1 ]
(1 + λ)τ

,

or using the previous approximation

Etxt+1 = Ω (rt) + (1 + λ)∆ (rt)− rt. (47)

Once we know the expression for the exchange rate and the expectation, the
interest rates differential is obtained from the uncovered interest parity condition
as

dt = Ω (rt) + (1 + λ)∆ (rt)− xt (48)

B Estimation of σ and µ
Bekaert [4] reports an unconditional variance for a time invariant risk premium
of 10.6222, for the Dollar/Yen rate. This is equivalent to a monthly standard
deviation of σ = 0.008 basis points per month. Bekaert and Gray [6] estimate
a mean for the foreign risk premium of 3.02% and standard deviation of 3.28%,
in yearly terms, for the FF/DM exchange rate, with fluctuations between the
[−3.30%,+31.45%] interval. For flexible rates, Bekaert [5] concludes that this
standard deviation is about 10%.
As a first approximation, we have used the ARCH-in-mean estimation by

Domowitz and Hakkio [14], for monthly observations 1973:6-1982:8, of Stirling
Pound, French Franc, German Marc, Japanese Yen and Swiss Franc, all against
the USA Dollar. Table B.1 reports the results from a Montecarlo simulation
with calculations of the standard deviations for a first difference of rt. Values
goes from a minimum of 0% for the Swiss Franc (i.e. no variability in its risk
premium), to a maximum of 1% per month for the DM versus the dollar.
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Table B.1 here

As a second approximation, we estimate a n-variate VAR

zt = a+
kX
i=1

Aizt−i + ηt (49)

with ηt ∼ N (0,Σ) for every t, serially uncorrelated, and Σ not diagonal, where
zt is a (n× 1) vector whose first element is given by ∆xt ≡ xt − xt−1. Three
different specifications are given:

Model 1 : zt = (∆xt,∆it,∆i
∗
t )
0
,

Model 2 : zt = (∆xt, it − i∗t )0 ,
Model 3 : zt = (∆xt, it − i∗t ,πt − π∗t )

0
,

with it and i∗t are the domestic and the German interest rates, respectively,
measured by 1-month interbank rates. Notice that ∆xt collects within band
jumps and realignments. In model 1, variables are first differenced to preserve
stationarity. In models 2 and 3, stationarity is also reached through the interest
rate differential. On the other hand, πt and π∗t stand by domestic and German
inflation rates, as measured by deseasonalized CPI’s. Both interest rates and
inflation rates are natural candidates to forecast the exchange rate. Since no
restrictions are imposed on the coefficients of matrices A0is, OLS can be applied
to estimate (49). We use monthly observations of these variables for Belgium,
Denmark, France, Ireland, Italy, The Netherlands, Spain, Portugal and United
Kingdom. All exchange rates are expressed in terms of one German Mark.
Observations cover the final period of the EMS, from July 1989 to December
1998 (114 observations).
Thus, the one period ahead expectation is given by

eEt (zt+1) = ea+ kX
i=1

eAizt+1−i. (50)

for which the first row of (50) yields an estimate for the expectation

eEt (∆xt+1) = eEt (xt+1 − xt) .
This estimate is used to calculate deviations from UIP as

ert = it − i∗t − eEt (∆xt+1) .
Finally, we compute the standard deviation eσ as

eσ = std (∆ert) .
Results are collected in table B.2. A LR-test has been used to identify the

V AR (k) order. Countries are organized according to its σ-estimate in model
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1, but this ordinality (and cardinality as well) is more or less preserved under
models 2 and 3. At the first sight, countries who suffered the biggest speculative
attacks in September 1992 happen to have also the largest σ, regardless the
preference λ revealed by their respective central banks. Portugal is a borderline
case, and perhaps should be a priori associated to the lowest half of the table.
The mean value of these last four rows suggests a σ = 1% as representative of
those currencies that experienced serious credibility losses by September 1992.
This estimate coincides with the maximum given in the article of Domowitz and
Hakkio [14].

Table B.2 here

Table B.3 collects data of realignment rates for the different currencies par-
ticipating in the ERM of the EMS, except the Dutch guilder. Columns represent
the percentage of realignment. Pooling these data for each band, it seems that
µ = ±4.5% and µ = ±6.3%, for widths w = ±2.25 and w = ±6%, respectively,
are consistent with the EMS history.

Table B.3 here

C Numerical search of equilibrium
Expressions (19) and (20) define a system of two equations on (α, er), that is, a
function f (α, er) : [0, 1]×R→ R2, with

f (α, er) = Ã ζ(er)−ζ(r)
1−ζ(r) − α

G (er,α; {λ,σ, µ})
!
,

now the function G (·) is expressed to mean that it is depending on (α, er), for
given {λ,σ, µ}. Therefore, the problem to solve is to find a fixed point (α, er),
such that f (α, er) = 0.
The following procedure is a four step iterative numerical algorithm to solve

this fixed point problem.

• 1st step. This step generates two values, indexed with
n = 1, 2.

Guess two starting values for α, say α(1) and α(2), such that

0 ≤ α(1) < α(2) < 1,

define the profiles P(1) =
©
λ, w,α(1)

ª
and P(2) =

©
λ, w,α(2)

ª
, and calcu-

late the ranges
£−r(1), r(1)¤ and £−r(2), r(2)¤, for which

x = u
¡
r(1)|P(1)

¢
= w,

x = u
¡
r(2)|P(2)

¢
= w.
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Calculate the values er(1) and er(2) for which
α(1) =

ζ
¡er(1)¢− ζ

¡
r(1)

¢
1− ζ

¡
r(1)

¢ .

α(2) =
ζ
¡er(2)¢− ζ

¡
r(2)

¢
1− ζ

¡
r(2)

¢ .

Compute the gain functions in both cases conditioned on their respec-
tive values, er(1) and er(2). If G(1) = G

¡er(1);P(1)¢ is negative and G(1) =
G
¡er(2);P(2)¢ is positive, then proceed through step number 2. Otherwise,

find a duet of starting values,
©
0 ≤ α(1) < α(2) < 1

ª
yielding©

G(1) < 0, G(2) > 0
ª
.

• 2nd step. This step generates values indexed with
n = 3, 4, ...

Update α with a linear projection as

α(n) = αinf(n) −
αsup(n) − αinf(n)

Gsup(n) −Ginf(n)
Ginf(n),

where

Ginf(n) = max
©G−ª ,

Gsup(n) = min
©G+ª ,

with G− and G+ being the sets that collect the sequence of negative and
positive gains, respectively:

G− =
n
G
¡er(i);P(i)¢i=1,...,n−1 / G ¡er(i);P(i)¢ ≤ 0o ,

G+ =
n
G
¡er(i);P(i)¢i=1,...,n−1 / G ¡er(i);P(i)¢ > 0o ,

and
n
αinf(n),α

sup

(n)

o
is the pair of probabilities associated to Gsup(n) and G

inf
(n),

respectively. Calculate the range
£−r(n), r(n)¤, for which

u
¡
r(n)|P(n)

¢
= w.

Calculate the value er(n) that solves
α(n) =

ζ
¡er(n)¢− ζ

¡
r(n)

¢
1− ζ

¡
r(n)

¢ .

Calculate G(n) = G
¡er(n);P(n)¢.

• 3rd step. If α(n+1) 6= α(n) go again to 2nd step. For practical purposes,
we give a numerical tolerance of 10−5 for the difference

¯̄
α(n+1) − α(n)

¯̄
.

Otherwise, if such a tolerance level has been reached, the process is fin-
ished.
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D Tables
Table 1

Nonofficial band widths and Maastricht criteria
Country Implicit band Official band Maastricht
Netherlands ±0.85% ±15% 1.75
Belgium ±2.06% ±15% 2.00
Denmark ±6.65% ±15% 1.50
Portugal ±7.89% ±15% 3.75
Spain ±10.08% ±15% 3.25
Ireland ±12.95% ±15% 1.00
Source: Labhard and Wyplosz [21] and Deustche Bundesbank [13]

Table 2
Recent examples of band widening

Country Date Width change
Chile January 20, 1997 ±12, 5%→ ±5.00%

June 25,1998 ±5.00%→ ±2.75%
September 16, 1998 ±2.75%→ ±3.50%
December 22, 1998 ±3.50%→ ±8.00%
September 2, 1999 ±8.00%→ Float

Cyprus August 1, 1999 ±2.25%→ ±15.0%
Czech Republic February 28, 1996 ±2.00%→ ±7.50%

May 27, 1997 ±7.50%→ Float
Ecuador March 25, 1998 ±5.00%→ ±10.0%

September 14, 1998 ±10.0%→ ±15.0%
February 12, 1999 ±15.0%→ Float

Hungary May 2001 ±2.25%→ ±15.0%
Israel March 1, 1990 ±3.00%→ ±5.00%

July 26, 1993 ±5.00%→ +6.00%
December 30, 2000 ±6.00%→ ±39.2%

Poland October 29, 1998 ±10.0%→ ±12.5%
March 24, 1999 ±12.5%→ ±15.0%
April 12, 2000 ±15.0%→ Float

Sri Lanka November 3, 2000 ±6.00%→ ±8.00%
December 11, 2000 ±8.00%→ ±10.0%
January 22, 2001 ±10.0%→ Float

Uruguay January 4, 2002 ±3.00%→ ±6.00%
Source: Reinhart and Rogoff [28]

26



Table 3
Equilibrium results for α
w = ±2.25% w = ±6.0% w = ±15%

λ µ = ±4.50% µ = ±6.3% µ = ±7.5%
1× 10−1 1.00 1.00 1.00
1× 10−2 0.98 0.99 0.98
1× 10−3 0.51 0.85 0.86
5× 10−4 0.39 0.76 0.85
1× 10−4 0.23 0.71 0.85

Table 4
Optimal band widths

λ w (λ)∗ α (λ)∗

0.0008 15% 0.8223
0.0009 14% 0.8189
0.0010 11% 0.8694
0.0020 11% 0.9945
0.0030 8% 1.0000
0.0040 6% 1.0000
0.0050 5% 1.0000
0.0060 4% 1.0000
0.0070 3% 1.0000
0.0080 3% 1.0000
0.0090 2% 1.0000
0.0100 2% 1.0000
0.0500 1% 1.0000
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Table B.1:
Montecarlo simulation of σ
Country std (∆rt) ' σ
United Kingdom 0.0022
France 0.0044
Germany 0.0101
Japan 0.0046
Switzerland 0

Table B.2:
VAR estimation of σ
Model 1 Model 2 Model 3

Country k eσ k eσ k eσ
Netherlands 4 0.00055 2 0.00040 1 0.00026

Belgium 4 0.00321 4 0.00323 4 0.00325

France 4 0.00330 5 0.00305 5 0.00312

Portugal 12 0.00560 9 0.00499 10 0.00556

Denmark 6 0.00575 7 0.00566 7 0.00592

Spain 5 0.00628 7 0.00763 5 0.00574

Ireland 4 0.00898 2 0.00474 3 0.00746

United Kingdom 3 0.01301 5 0.01216 3 0.01337

Italy 3 0.01680 4 0.01704 4 0.01729

Table B.3:
Realignment rates in the ERM10

Date FF IRP BF DK ITL SP ESC
24-Sep-1979 2.00 2.00 2.00 5.00 2.00

30-Nov-1979 0.14 5.00

23-Mar-1981 -0.14 6.38

5-Oct-1981 8.76 5.50 5.50 5.50 8.76

22-Feb-1982 9.29 3.09

14-Jun-1982 10.61 4.25 4.25 4.25 7.20

21-Mar-1983 8.20 9.33 3.94 2.93 8.20

25-Jul-1985 8.51

6-Apr-1986 6.19 3.00 1.98 1.98 3.00

2-Aug-1986 8.70

12-Jan-1987 3.00 3.00 0.98 3.00 3.00

8-Jan-1990 3.82

14-Sep-1992 7.25

17-Sep-1992 5.26

23-Nov-1992 6.38 6.38

14-May-1993 8.70 6.95

Average 6.46 5.86 3.10 3.84 5.54 6.78 6.67

std 3.39 3.41 3.01 1.26 2.42 1.75 0.40

10FF stands for the French franc, IRP the Irish punt, BF the Belgium franc, DK the Danish
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Figure 1:
Function u(r)  (l = 0.5)
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Figure 3: λ = 10-1
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Figure 2: λ = 10-4
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Figure 4:  λ = 10-4
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