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Abstract

We introduce a subclass of multi-sided assignment games that embodies markets with

different types of firms that produce different types of homogeneous goods. These markets

generalize bilateral Böhm-Bawerk horse markets. We describe the geometric and algebraic

structure of the core, which is always nonempty. We also characterize the extreme points

of the core and show that they are marginal worth vectors, although this does not hold for

arbitrary multi-sided assignment games. Finally we show that prices that are obtained

from core allocations are competitive and vice versa.
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1 Introduction

Consider a market in which there are buyers and two types of firms producing respectively

two types of indivisible and perfectly complementary goods. Let S = {S1, ..., Sns} and

H = {H1, ...,Hnh
} be the two sets of goods. For instance, S could be a set of software

products and H a set of hardware products. Suppose there are ns firms each one of them

producing exactly one different unit of S at unitary costs cS
1 , ..., cS

ns
respectively and nh

firms each one of them producing exactly one different unit of H at unitary costs cH
1 , ..., cH

nh

respectively. Each buyer is only interested on buying at most a unit of each type of product,

but has no utility on buying separately either a unit of S or a unit of H. If B = {B1, ..., Bnb
}

is the set of nb buyers we denote by wk
ij the willingness-to-pay of buyer Bk for the pair

(Si,Hj).

In this market, a transaction can only be carried out when a buyer acquires exactly a unit

of S and a unit of H. Let pi and qj be the prices the buyer Bk pays for Si and Hj, respectively.

At such prices, her utility is given by wk
ij − pi − qj, whereas the benefit of the firm producing

Si is pi − cS
i and the benefit of the firm producing Hj is qj − cH

j . If we assume that the

utility of the buyer is monetary and transferable the total surplus generated by a transaction

is
(
wk

ij − pi − qj

)
+

(
pi − cS

i

)
+

(
qj − cH

j

)
= wk

ij − cS
i − cH

j . Obviously, if wk
ij − cS

i − cH
j < 0

no transaction will be carried out because there are no prices that simultaneously give non-

negative utility to the buyer and the two producers. Then, let aijk = max
{
0, wk

ij − cS
i − cH

j

}

be the total gain generated when Si, Hj and Bk are ’assigned’, i.e: when buyer Bk buys Si

and Hj. The above market is completely determined by giving the sets of buyers and firms

and parameters aijk. Obviously, the model can be extended to an arbitrary m-sided market,

with m − 1 different types of goods.

A particular case of the above market is obtained when the willingness-to-pay of any

buyer is the same, irrespective which firms she buys products Si and Hj from. That is, units

of S and units of H are respectively homogeneous from any buyer’s point of view. In such
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case we can denote wk
ij = wk, and thus the profit generated by buyer Bk and firms Si and Hj

is given by aijk = max
{
0, wk − cS

i − cH
j

}
. This specific market is the natural generalization

of the Böhm-Bawerk horse market (Böhm-Bawerk, 1923) to a three-sided market.

The above m-sided market -either with homogeneous goods or not- can be studied in the

framework of multi-sided assignment games. Multi-sided assignment games were introduced

by Quint (1991) as the generalization of two-sided assignment games (Shapley and Shubik,

1972), and have been studied also in Lucas (1995), Stuart (1997) and Sherstyuk (1998, 1999).

The present paper is devoted to study the subclass of multi–sided assignment games that

embodies multi-sided markets with homogeneous goods. Such multi-sided assignment games

will be called truncated additive. The rest of the paper is organized as follows. In Section 2 we

present the necessary notation and background results. In Section 3 we define the truncated

additive multi-sided assignment games and describe their core. In Section 4 we characterize

the extreme points of the core of such multi-sided assignment games and prove that every

extreme core point is a marginal worth vector. In Section 5, we characterize the dimension

of the core of any truncated additive multi-sided assignment game. Finally, in Section 6

competitive prices in multi-sided assignment markets with homogeneous goods are analyzed

in terms of the results obtained in previous sections.

2 Preliminaries and notation

Consider a m-sided market in which there are m different types (or sectors) of agents. For any

type j, 1 ≤ j ≤ m, let {j}×N j be the finite set of agents of type j, where N j = {1, 2, ..., nj}.

That is, the i-th agent of type j is the pair (j, i) ∈ {j} × N j. However, by convention

(see Quint, 1991) we will refer to agent (j, i) as j-i. On the other hand, since for every

j, 1 ≤ j ≤ m there is a bijection between N j and {j} × N j, when no confusion can arise

we will use the former set instead of the latter. In particular, we call any m-tuple of agents

E = (i1, ..., im) ∈ N1 × ...×Nm an essential coalition and we say that agent j-i belongs to E
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if Ej = i.

In a m-sided assignment problem (shortly m-SAP) exactly one agent of each type is

required to turn a transaction into a value. Thus, for any (i1, ..., im) ∈ N1 × ... × Nm

there is a parameter ai1...im that stands for the worth of the transaction when agents j-

ij , 1 ≤ j ≤ m meet. Hence, a m-sided assignment problem is completely defined by giving

the sets N j , 1 ≤ j ≤ m, and the function

A : N1 × ... × Nm −→ R+

(i1, ..., im) −→ A(i1, ..., im) = ai1...im,

where R+ = [0,+∞). The reader will notice that the function A represents a m-dimensional

matrix. A m-sided assignment problem is denoted by (N1, ...,Nm;A) and, if n1 = n2 = ... =

nm, we say that the m-SAP is square.

A matching µ = {E1, ..., Et} among N1, ...,Nm is a set of essential coalitions such that

|µ| = t = min1≤j≤m |N j | and any agent j-i belongs at most to one essential coalition

E1, ..., Et. We say that agent j-i is unassigned by µ if she does not belong to Ek for

any 1 ≤ k ≤ t. We denote by M(N1, ...,Nm) the set of all matchings among N1, ...,Nm.

Given a m-SAP (N1, ...,Nm;A), a matching µ∗ is optimal if

∑

(i1,...,im)∈µ∗

A(i1, ..., im) ≥
∑

(i1,...,im)∈µ

A(i1, ..., im),

for any µ ∈ M(N1, ...,Nm). We denote by M
∗
A(N1, ...,Nm) the set of all optimal matchings

of (N1, ...,Nm;A). Since n1, ..., nm are finite, at least one optimal matching always exists

and thus M
∗
A(N1, ...,Nm) is always nonempty.

Following Shapley and Shubik (1972) and Quint (1991), for each multi-sided assignment

problem (N1, ...,Nm;A) the m-sided assignment game (m-SAG) is the cooperative game

(N,ωA) with set of players N = {j-i : 1 ≤ j ≤ m, 1 ≤ i ≤ nj} and characteristic function

ωA defined as the smallest superadditive function on 2N satisfying ωA({j-i}) = 0 for all

1 ≤ i ≤ nj, 1 ≤ j ≤ m and ωA({1-i1, ...,m-im}) = ai1...im for all (i1, ..., im) ∈ N1 × ... × Nm.
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Formally,

ωA(S) = max
µ∈M(N1∩S,...,Nm∩S)





∑

(i1,...,im)∈µ

A(i1, ..., im)



 ,

where the summation over the empty set is zero.

Notice that for a given m-SAP (N1, ...,Nm;A), there are n1 + ... + nm different players.

Hence, the payoff vectors for the associated m-SAG belong to Rn1
+ × ...×Rnm

+ . We will denote

any payoff vector x ∈ Rn1
+ × ... × Rnm

+ by

(x11, ..., x1n1 ;x21, ..., x2n2 ; ...;xm1, ..., xmnm),

where, for all 1 ≤ j ≤ m and 1 ≤ i ≤ nj, xji is the payoff of agent j-i and the semicolons are

used to separate payoffs to agents of different types.

Quint (1991) shows that given a multi-sided assignment game (N ;ωA), its core (Gillies,

1959), that will be denoted by C(ωA), is the set of vectors satisfying that xji = 0 if j-i is

unmatched under some optimal matching and

(1)

m∑

j=1

xjij ≥ A(i1, ..., im),

for any (i1, ..., im) ∈ N1 × ...×Nm, where (1) holds as equality if (i1, ..., im) belongs to some

optimal matching.

Finally, if m = 2 the setting reduces to the classic Shapley-Shubik assignment market

(Shapley and Shubik, 1972). It is well-kown that such games are always balanced, i.e. they

have a nonempty core. Furthermore, since any subgame of a m-SAG is also a m-SAG, two-

sided assignment games are totally balanced, i.e. any subgame has always a nonempty core.

However, for more than two sides the core of a m-SAG may be empty -see Kaneko and

Wooders (1982) in a more general framework or Quint (1991)- and balanced m-SAGs might

not be totally balanced (Quint, 1991).
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3 Truncated additive m-sided assignment games: the core

We next introduce a subclass of multi-sided assigment problems, namely the truncated additive.

Roughly speaking, given fixed exogenous vectors one for each type of agents d1 ∈ Rn1, ..., dm ∈

Rnm, a m-SAP (N1, ...,Nm;A) is truncated additive if each entry of the matrix A is obtained

adding exactly one specific element of each vector d1, ..., dm, whenever the sum is positive.

When it is not, the entry is truncated to zero. For all j, 1 ≤ j ≤ m we denote the i-th

component of the vector dj ∈ R
nj by dji and we refer to it as the productivity1 of agent j-i.

Definition 1 Given the sets of agents N1, ...,Nm and exogenous vectors d1 ∈ Rn1, ..., dm ∈

Rnm, the truncated additive m-SAP associated to d = (d1, ..., dm) is the m-SAP (N1, ...,Nm;Ad),

where

(2) Ad(i1, ..., im) = max



0,

m∑

j=1

djij



 ,

for any (i1, ..., im) ∈ N1 × ... × Nm.

Without loss of generality, from now on we will assume that the components of each of

these vectors d1, ..., dm are arranged in a non-increasing order, that is, dj1 ≥ ... ≥ djnj
for

all 1 ≤ j ≤ m. We will also assume that
∑m

j=1 dj1 > 0 to avoid the trivial game. On the

other hand, we know that an arbitrary m-SAP (N1, ...,Nm;A) can always be assumed to

be square by introducing dummy agents, that is, agents such that any entry of the matrix

A related to them is 0. In particular, this can be done for any truncated additive m-SAP

(N1, ...,Nm;Ad) without disturbing its ’truncated additive’ nature just by adding dummy

agents of low enough productivity, for instance −∞. Hence, from now on we will assume

that d1, ..., dm ∈ R̃n
≥, where R̃n

≥ = {(x1, ..., xn) ∈ R̃n : x1 ≥ ... ≥ xn} and R̃ = R ∪ {−∞}.

Lastly, observe that different vectors d can give rise to the same matrix Ad.

1We are aware that referring to dji as the productivity of agent ji might not be meaningful when it is

negative. We allow negative productivities in order to incorporate costs, like in the Böhm-Bawerk two-sided

market.

6



On the other hand, m-sided markets with homogeneous goods can be represented by

truncated additive m-SAGs. Indeed, the market described in the introduction depends only

upon A(i, j, k) = max
{
0,−cs

i − ch
j + wk

}
, for any firm i producing a unit of S, any firm j

producing a unit of H and any buyer k. To better illustrate the above definition consider the

following example, which will be used later.

Example 2 Consider a 3-sided market with homogeneous goods where there are two firms

for each of the two different types (of firms) with unitary costs of c1 = (1, 8) and c2 = (1, 3)

respectively and two buyers with a vector of willingness-to-pay w = (7, 5). The truncated

3-SAP generated by d = (−1,−8;−1,−3; 7, 5) gives rise to the following matrix Ad, where

the optimal matching is marked in bold,

d21 = −1 d22 = −3 d21 = −1 d22 = −3

d11 = −1

d12 = −8




5

0

3

0







3

0

1

0


 .

d31 = 7 d32 = 5

Furthermore, other economic situations can be modeled by truncated additive m-SAPs.

Indeed, consider a type of indivisible product that has to be sold after some compulsory steps

along a (handcrafted) value chain. In every stage, there are agents that receive at most one

product, add their own value through an specific procedure and give it to the next stage.

Then, the final value of one product, A(i1, ..., im), is the sum of its initial value, d1i1 , and

what is added to it along the chosen m − 1 steps of the value chain, djij for all j = 2, ...,m,

whenever the sum of added values to the initial value is positive. When it is not, we assume

that the final value is 0, that is, no object is produced.

For any arbitrary truncated additive m-SAP (N1, ...,Nm;Ad) we denote

(3) r = max
1≤i≤n

{
i : Ad(i, ..., i) > 0

}
.
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For instance, in Example 2 we have that r = 1. Due to the ’truncated additive’ nature of

matrix Ad, the ’diagonal matching’ {(l, ..., l) : 1 ≤ l ≤ n} is optimal. Moreover, a matching

µ ∈ M(N1, ...,Nm) that assigns all agents with index not larger than r among them is also

optimal. Hence, r represents the number of essential coalitions of an optimal matching that

contribute with a positive worth to the worth of the grand coalition, ωAd(N).

Now we study the structure of the core of a truncated additive m-SAG and show that it

can be expressed as a polyhedron of Rm−1. Let (N,ωAd) be a truncated additive m-SAG. By

core conditions -see (1)- a vector x ∈ Rn·m belongs to C(ωAd) if and only if it has nonnegative

components, for any (i1, ..., im) ∈ {1, ..., r}m

(4)

m∑

j=1

xjij =

m∑

j=1

djij ,

for any (i1, ..., im) /∈ {1, ..., r}m

(5)
m∑

j=1

xjij ≥ max


0,

m∑

j=1

djij


 ,

and if r + 1 ≤ i ≤ n, 1 ≤ j ≤ m

(6) xji = 0.

First notice that (4) is a compatible linear system (d is a solution) of rm linear equations

on the r · m variables x11, ..., x1r , ..., xm1, ..., xmr. In the Appendix it is shown that in such

system there are m − 1 degrees of freedom (in Section 6 it is shown that, when truncated

m-SAGs are interpreted as assignment markets with m − 1 homogeneous goods, each of

the m − 1 degrees of freedom is related to the price of a different good). In particular, we

can recover any vector x ∈ C(ωAd) from the first component of the first m − 1 types, i.e

x11, x21, ..., x(m−1)1. Further, from (4) it can be easily deduced that the other components

are obtained using the following formulae:

(7) xji = xj1 + (dji − dj1), for 1 ≤ j ≤ m − 1, 1 ≤ i ≤ r,
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(8) xmi = dmi +

m−1∑

j=1

dj1 −

m−1∑

j=1

xj1, for 1 ≤ i ≤ r,

(9) xji = 0, for 1 ≤ j ≤ m, r + 1 ≤ i ≤ n.

In particular, observe that the difference between nonzero core payoffs of two agents of

the same type is exactly the difference between their productivities. We define the projection

of C(ωAd) onto the space of payoff vectors of agents 1-1, ..., (m − 1)-1 as

Cm−1(ωAd) =
{
(x11, ..., x(m−1)1) ∈ R

m−1 : (x11,..., x1n; ...;xm1, ..., xmn) ∈ C(ωAd)
}

.

Using formulae (7), (8) and (9) it is easy to prove that there is a one-to-one correspondence

between Cm−1(ωAd) and C(ωAd). Therefore, we can describe Cm−1(ωAd) as an specific

polyhedron in Rm−1. Indeed,

Theorem 3 Let (N1, ...,Nm;Ad) be a truncated additive m-SAP. Then (N,ωAd) is totally

balanced and the (nonempty) projection of its core, Cm−1(ωAd), is the polyhedron in Rm−1

on the variables x11, ..., x(m−1)1 defined by the following constraints:

(10) xj1 ≥ dj1 − djr, for j = 1, ...,m − 1,

(11)
m−1∑

j=1

xj1 ≤ dmr +
m−1∑

j=1

dj1,

(12)
m−1∑

j=1

xj1 ≥ dm(r+1) +
m−1∑

j=1

dj1,

(13) xj1 ≤ dj1 − dj(r+1), for j = 1, ...,m − 1,

where (12) and (13) do not apply if r = n, being r defined in (3).

Proof. First notice that function A(·, ..., ·) is supermodular over the lattice defined by the

componentwise order on N1 × ... × Nm, i.e.

A(i1, ..., im) + A(l1, ..., lm) ≤ A(min{i1, l1}, ...,min{im, lm})

+A(max{i1, l1}, ...,max{im, lm}).
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Then, total balancedness of (N,ωAd) holds by Sherstyuk (1999).

Second, let P (d) be the polyhedron of Rm−1 defined by (10) and (11) (and (12) and (13)

whenever r < n). We show that Cm−1(ωAd) = P (d).

On one hand we prove Cm−1(ωAd) ⊇ P (d). Take x ∈ P (d) and let x ∈ Rnm be the vector

obtained applying (7), (8) and (9) to x. We want to show that x has nonnegative components

and satisfies (4), (5) and (6).

Next observe that nonnegativeness conditions hold from (7), (8), (10) and (11). Indeed,

xji = xj1 + (dji − dj1) ≥ xj1 + (djr − dj1) ≥ 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ m − 1 and

xmi = dmi +
∑m−1

j=1 dj1 −
∑m−1

j=1 xj1 ≥ dmr +
∑m−1

j=1 dj1 −
∑m−1

j=1 xj1 ≥ 0 for all 1 ≤ i ≤ r by

(11). Additionally (6) trivially holds by (9).

Next, for any (i1, ..., im) ∈ {1, ..., r} × ... × {1, ..., r} we have by (7) and (8)

m∑

j=1

xjij =
m−1∑

j=1

xj1 +
m−1∑

j=1

(djij − dj1) + dmim +
m−1∑

j=1

dj1 −
m−1∑

j=1

xj1 =
m∑

j=1

djij .

Then (4) is satisfied. If r = n we are done. If not, i.e. r < n, we need to prove that (5)

holds. Suppose (i1, ..., im) /∈ {1, ..., r}m. We must distinguish two cases.

• Case 1: 1 ≤ im ≤ r.

m∑

j=1

xjij =

m−1∑

j=1

xjij + xmim = (by (7), (8), (9))

=
m−1∑

j=1,ij≤r

(
xj1 + djij − dj1

)
+ dmim +

m−1∑

j=1

dj1 −
m−1∑

j=1

xj1

= −

m−1∑

j=1,ij>r

xj1 +

m∑

j=1,ij≤r

djij +

m−1∑

j=1,ij>r

dj1 = (by (13))

≥

m−1∑

j=1,ij>r

(
dj(r+1) − dj1

)
+

m∑

j=1,ij≤r

djij +

m−1∑

j=1,ij>r

dj1

=

m∑

j=1,ij≤r

djij +

m−1∑

j=1,ij>r

dj(r+1) ≥

m∑

j=1

djij

where the last inequality holds since djij ≤ dj(r+1) whenever ij > r, and therefore (5)

holds.
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• Case 2: r + 1 ≤ im ≤ n.

m∑

j=1

xjij =
m−1∑

j=1

xjij + xmim = (by (7), (9))

=
m−1∑

j=1,ij≤r

xjij =
m−1∑

j=1,ij≤r

(
xj1 + djij − dj1

)

=
m−1∑

j=1

xj1 +
m−1∑

j=1,ij≤r

(
djij − dj1

)
−

m−1∑

j=1,ij>r

xj1 = (by (12), (13))

≥ dm(r+1) +

m−1∑

j=1

dj1 +

m−1∑

j=1,ij≤r

(
djij − dj1

)
+

m−1∑

j=1,ij>r

(
dj(r+1) − dj1

)

= dm(r+1) +

m−1∑

j=1,ij≤r

djij +

m−1∑

j=1,ij>r

dj(r+1) ≥

m∑

j=1

djij

where the last inequality holds since djij ≤ dj(r+1) whenever ij > r. Again (5) holds.

On the other hand we prove Cm−1(ωAd) ⊆ P (d). Take x ∈ Cm−1(ωAd) and let x ∈ Rnm
+

be the corresponding core allocation obtained by (7), (8) and (9). First, by nonnegativeness

of xjr for all 1 ≤ j ≤ m−1 and using (7), we obtain (10). Second, by nonnegativeness of xmr

and using (8), we obtain (11). If r = n we are done. If not, i.e. r < n, applying (6) and (5) to

S = {1-1, ..., (m − 1) -1,m- (r + 1)} and taking (9) into account we obtain x(S) =
∑m−1

j=1 xj1+

xm(r+1) =
∑m−1

j=1 xj1 +0 ≥ max
(
0, dm(r+1) +

∑m−1
j=1 dj1

)
and then (12) holds. Finally, for all

1 ≤ j ≤ m−1, by applying (6) and (5) to S = {1-1, ..., (j − 1) -1, j- (r + 1) , (j + 1) -1, ...,m-1}

we obtain

xj(r+1) +
m∑

k=1,k 6=j

xk1 =
m∑

k=1,k 6=j

xk1 ≥ max


0, dj(r+1) +

m∑

k=1,k 6=j

dk1




≥ dj(r+1) +

m∑

k=1,k 6=j

dk1

= dj(r+1) +

m∑

k=1,k 6=j

xk1 + xj1 − dj1.

Lastly, substracting the common terms to both sides of the above inequality and using (9)

we obtain that (13) holds, taking into account that
∑m

k=1 xk1 =
∑m

k=1 dk1.

It is important to point out that equations (10) and (11) (resp. (12) and (13)) are in

fact of the same nature although they appear not to be due to the election of the specific
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projection space Cm−1(ωAd).2

Next we take a look again at Example 2. Recall that the parameter defined in (3) is r = 1,

whereas d = (−1,−8;−1,−3; 7, 5). From Proposition 3, the core C(ωAd) of the game can be

represented by its projection onto the space C2(ωAd), which is the set of pairs (x11, x21) such

that

0 = d11 − d11 ≤ x11 ≤ d11 − d12 = 7,

0 = d21 − d21 ≤ x21 ≤ d21 − d22 = 2,

3 = d32 + d11 + d21 ≤ x11 + x21 ≤ d31 + d11 + d21 = 5.

In Figure 1, the projection of the core, C2(ωAd), is the polygon defined by vertices (1, 2),

(3, 0), (3, 2) and (5, 0).

..

. .. ..

.

.

.

(0, 0) (3, 0)

(3, 2)

(5, 0)

(1, 2)

x21

x11

x11 + x21 = 3

x11 + x21 = 5

Figure 1: The projected core of the truncated additive m-SAG of Example 2.

2In the case of two-sided assignment games the core is usually represented by its projection onto the

agents of one sector (either buyers or sellers). This representation is not useful when there are more than two

sectors since, unlike the two-sectors case, once fixed the payment to one agent, the payments to other agents

of different types that are assigned together to that agent are not completely determined. However, in the

specific case of truncated additive m-SAGs, there is still a ’good’ representation, namely Cm−1(ωAd).
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4 Extreme core points

This section is devoted to characterize the extreme core points of an arbitrary truncated

additive multi-sided assignment game. We show that the extreme core points of such games

are some specific vectors introduced by Sherstyuk (1999) that generalize to some extent the

idea of buyers-optimal and sellers-optimal core allocations from the two-sided case to the

general multi-sided case. Additionally, we provide expressions to calculate such vectors and

we show that they are marginal worth vectors, generalizing therefore a property that holds

for all two-sided assignment games (Hamers et al., 2002). Furthermore, we show that this

property fails to hold in the class of arbitrary m-SAGs.

Given the set of types of agents J = {1, ...,m}, let ΠJ denote the set of orderings of J ,

i.e. the set of bijective maps from J to J . We denote by (π(1), ..., π(m)) an ordering π ∈ ΠJ

and we say that type j appears in the k-th position if π(k) = j. Then, given a general square

m-SAP (N1, ...,Nm;A), we associate a vector xπ of Rnm to any π ∈ ΠJ . Without loss of

generality, suppose that the ’diagonal’ assignment is optimal and let π = (1, 2, ...,m). We

consider the allocation xπ in which all agents of the first type get their marginal contribution,

ωA(N) − ωA(N\{1-i}), whereas any agent of the second type gets their ’second’ marginal

contribution, ωA(N\{1-i}) − ωA(N\{1-i, 2-i}), that is, her marginal contribution provided

that the agent of the first type with her same index (that is assigned to her in the diagonal

matching) has left the game. And so on and so forth. Obviously, this can be done for any

arbitrary π and any arbitrary matching3.

In particular, when there are two sectors, i.e. m = 2, the set of sectors (types) J = {1, 2}

can only be ordered in two different ways and the above procedure delivers only two vectors:

on one hand, xπ (ωA) ∈ R2n defined by xπ
1i = ωA(N) − ωA(N\{1-i}) and xπ

2i = ωA(N\{1-

i}) − ωA(N\{1-i, 2-i}) for all 1 ≤ i ≤ n, and, on the other hand, xπ′

(ωA) ∈ R2n defined by

xπ′

2i = ωA(N) − ωA(N\{2-i}) and xπ′

1i = ωA(N\{2-i}) − ωA(N\{2-i, 1-i}) for all 1 ≤ i ≤ n.

3Recall that, by relabeling agents for convenience, any optimal matching of an arbitrary m-SAG can always

be placed in the diagonal.
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Furthermore, it turns out that xπ and xπ′

are the buyers-optimal and the sellers-optimal

vectors of any two-sided assignment game (see for instance Nuñez and Rafels, 2002).

Definition 4 Given an arbitrary square m-SAP (N1, ...,Nm;A) and π ∈ ΠJ , the sector-

marginal vector xπ(ωA) ∈ Rnm is defined by

xπ
π(k)i(ωA) = ωA(N\{π(1)-i, ..., π(k − 1)-i}) − ωA(N\{π(1)-i, ..., π(k − 1)-i, π(k)-i})

for all 1 ≤ i ≤ n and for all 1 ≤ k ≤ m, provided that {(l, ..., l) : 1 ≤ l ≤ n} ∈

M
∗
A(N1, ...,Nm).

Later we will show that, although the above definition of sector-marginal vectors apparently

depends on the optimal matching chosen -that is placed in the diagonal- when (N1, ...,Nm;A)

is truncated additive it actually does not. On the other hand, when no confusion arises we

use xπ instead of xπ(ωA).

We can give another interpretation of sector-marginal vectors. To this end, let us first

introduce the definition of marginal worth vectors for arbitrary games. Given a game (N, v),

an ordering θ of N is a bijection from {1, ..., |N |} to N , and let Θ(N) be the set of all orderings

of N . Then the marginal worth vector mθ(v) ∈ Rn associated with θ is defined (see Shapley,

1971) by mθ
i = v({j : θ(j) ≤ θ(i)}) − v({j : θ(j) < θ(i)}), for all 1 ≤ i ≤ n. Now observe

that, given some sector-marginal vector xπ, if we fix i, 1 ≤ i ≤ n then agents 1-i, 2-i, ...,m-i

are paid as if they were in the first positions of some marginal worth vector (a different

one for each i) associated to some ordering of (all) agents (π(1)-i, π(2)-i, ...., π(m)-i, ....). In

particular, their payoffs add up altogether to the marginal contribution of these agents taken

as a whole,
∑m

j=1 xπ
ji = ωA(N)−ωA(N\{1-i, 2-i...,m-i}) = A(i, ..., i) . The last equality holds

because we assume that (i, ..., i) belongs to an optimal matching.

From now on, given a truncated additive m-SAP (N1, ...,Nm;Ad) with r = n, we will

introduce for any type an additional dummy agent with −∞ productivity such that the ’new

matrix’ Ad restricted to non-dummy agents does not change. Since dummy agents always

get a zero payoff in the core, this assumption can be made without loss of generality.
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We now turn to characterizing the set of extreme points of the core of a truncated additive

m-SAG. Before doing so, for any truncated additive m-SAP (N1, ...,Nm;Ad), let φ(q) =

max
{

0,
∑q

k=1 dk(r+1) +
∑m

k=q+1 dkr

}
, for q = 0, 1, ...,m. Observe that, because of the way

d is constructed, φ is a non-increasing function, whereas from (3) and the assumptions just

made, we have that φ(0) > 0 and φ(m) ≤ 0. It is important to point out that the definition

of φ is implicitely associated to the ’natural’ ordering of types π = (1, ...,m). Therefore, we

could define φπ for all π ∈ ΠJ . However, in the proofs of this section we will only need φπ

when π = (1, ...,m), written simply φ.

Next we provide expressions to calculate sector-marginal vectors for truncated additive

m-SAGs.

Proposition 5 Let (N,ωAd) be a truncated additive m-SAG and π ∈ ΠJ . Then, for all

sector j, 1 ≤ j ≤ m,

xπ
π(j)i(ωAd) = dπ(j)i − dπ(j)r + φπ(j − 1) − φπ(j), if 1 ≤ i ≤ r

and xπ
π(j)i(ωAd) = 0 if r + 1 ≤ i ≤ n.

Proof. Assume without loss of generality that π = (1, 2, ...,m). To compute the worth

ωAd(S) for an arbitrary coalition of agents S ⊆ N it is enough to split S in as many essential

coalitions as possible such that each of the ’best’ agents of all types in S are matched together,

each of the ’second best’ agents of all types in S are matched together, and so on and so

forth, until an essential coalition with the remaining agents cannot be formed. If we add the

worth of all these essential coalitions, we obtain ωAd(S). On the other hand, observe that

for all 1 ≤ j ≤ m, ωAd(N\{1-i, ..., (j − 1)-i}) − ωAd(N\{1-i, ..., (j − 1)-i, j-i}) is a difference

between two similar terms. Then, we next focus on a generic one of such terms. Indeed, if
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1 ≤ i ≤ r, observe that for any k, 0 ≤ k ≤ m,

ωAd(N\{1-i, ..., k-i})

=

i−1∑

l=1


max


0,

m∑

q=1

dql





 +

r−1∑

l=i


max


0,

k∑

q=1

dq(l+1) +

m∑

q=k+1

dql







+ max



0,

k∑

q=1

dq(r+1) +
m∑

q=k+1

dqr





=

i−1∑

l=1

m∑

q=1

dql +

r−1∑

l=i

k∑

q=1

dq(l+1) +

r−1∑

l=i

m∑

q=k+1

dql + φ(k)

=
r−1∑

l=1,l 6=i

m∑

q=1

dql +
k∑

q=1

dqr +
m∑

q=k+1

dqi + φ(k).

where the penultimate equality holds from the way d is arranged and from (3). Then, applying

the above expression to k = j − 1 and k = j we obtain

xπ
ji = ωAd(N\{1-i, ..., (j − 1)-i}) − ωAd(N\{1-i, ..., (j − 1)-i, j-i})

=
r−1∑

l=1,l 6=i

m∑

q=1

dql +

j−1∑

q=1

dqr +
m∑

q=j

dqi + φ(j − 1)

−




r−1∑

l=1,l 6=i

m∑

q=1

dql +

j∑

q=1

dqr +
m∑

q=j+1

dqi + φ(j)




= dji − djr + φ(j − 1) − φ(j).

A similar argument proves that if r + 1 ≤ i ≤ n then xπ
ji = ωAd(N) − ωAd(N) = 0, for

any 1 ≤ j ≤ m.

Next we show that, for truncated additive m-SAGs, sector-marginal vectors are core

allocations. Although this fact can be deduced from Sherstyuk (1999), an easier argument

can be provided for the case of truncated additive m-SAGs. Moreover, such argument gives

more insight of sector-marginal vectors. Indeed, let (N1, ...,Nm;Ad) be a truncated additive

m-SAP and assume without loss of generality that π = (1, 2, ...,m). On one hand, it is

straightforward to check that xπ
ji ≥ 0 for any agent j-i. On the other hand, we claim that, if

r < i ≤ m, then

(14) dji − djr + φ(j − 1) − φ(j) ≤ 0
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for any 1 ≤ j ≤ m. Indeed, depending on whether φ(j − 1) and φ(j) are positive or not

we can distinguish three different cases (recall that φ is non-increasing). Consider the case

where φ(j − 1) > 0 and φ(j) = 0. In such case, (14) reduces to φ(j − 1) ≤ djr − dji, which is

equivalent to
∑j−1

k=1 dk(r+1) + dji +
∑m

k=j+1 dkr ≤ 0. Lastly observe that, because of the way d

is ordered,
∑j−1

k=1 dk(r+1) +dji +
∑m

k=j+1 dkr ≤ φ(j) = 0. The other two cases can be similarly

proved and are left to the reader. Hence, for any (i1, ..., im) ∈ N1 × ... × Nm,

m∑

j=1

xπ
jij

=

m∑

j=1, 1≤ij≤r

xπ
jij

≥

m∑

j=1

(
djij − djr + φ(j − 1) − φ(j)

)

=

m∑

j=1

djij −

m∑

j=1

djr + φ(0) − φ(m) =

m∑

j=1

djij ,

where the inequality holds as equality if (i1, ..., im) ∈ {1, ...r}m. Thus xπ(ωAd) satisfies (7),

(8), (9) and therefore it belongs to C(ωAd). Since the claim has been proved without loss

of generality using the natural order, what we have shown is that, for truncated additive

m-SAGs, any sector-marginal vector belongs to the core. Furthermore, we next show that,

for truncated additive m-SAGs, any sector-marginal vector is a extreme point of the core and

conversely.

Theorem 6 Let (N,ωAd) be a truncated additive m-SAG. Then, the set of extreme core

points of (N,ωAd) coincides with the set of sector-marginal vectors, i.e.

Ext(C(ωAd)) = {xπ(ωAd)}π∈ΠJ .

Proof. We prove the two inclusions.

• Ext(C(ωAd)) ⊆ {xπ(ωAd)}π∈Π.

It is easy to check that the extreme points of C(ωAd) can be mapped one-to-one to the

extreme points of Cm−1(ωAd) through (7), (8) and (9). Hence, we only have to find the

extreme points of the polyhedron defined in Theorem 3. Let MT x ≥ b be the set of

non-trivial4 inequalities obtained from (10), (11), (12) and (13) that define Cm−1(ωAd).

4Observe that, if dm(r+1) = −∞, (12) always holds. The same can be said about (13) for all 1 ≤ j ≤ m−1.
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For each x ∈ Cm−1(ωAd), let tight(x) be the set of columns {Mej | xT Mej = bj} of M

that are tight at x. We know5 that x ∈ Cm−1(ωAd) is an extreme point if and only if

tight(x) is a complete system of Rm−1.

On the other hand notice that for any type j, 1 ≤ j ≤ m− 1, constraints (10) and (13)

cannot hold simultaneously as equality unless dj(r+1) = djr. However in this case both

inequalities are in fact the same. For (12) and (11) the same is true.

Now, with some abuse of notation, let x = (x11, ..., x(m−1)1) denote the extreme point of

Cm−1(ωAd) that corresponds to the extreme point x = (x11, ..., x1n; ... ; xm1, ..., xmn) ∈

C(ωAd). Then, m−1 linearly independent inequalities of (10), (11), (12) and (13) must

be tight at x . We distinguish two cases.

Case 1. Either (10), for some 1 ≤ j ≤ m − 1, or (11) are tight at x.

Recall that the difference between inequalities (10) and (11) comes only from the

specific projection chosen to obtain Cm−1(ωAd). Indeed, using (8) we have that

(11) is equivalent to xm1 ≥ dm1 − dmr. Then, as we can relabel the different

types of agents at our best convenience, we suppose without loss of generality that

(11) is tight at x. To form a complete system of Rm−1 we still need m − 2 tight

linearly independent equations from either (10) or (13). Thus, we can assume

that there is h∗ ∈ {1, ...,m − 1} such that (13) for j ∈ {1, ..., h∗ − 1} and (10) for

j ∈ {h∗ + 1, ...,m − 1} are tight at x, i.e.6

(15) xj1 = dj1 − dj(r+1) for j ∈ {1, ..., h∗ − 1}

and

(16) xj1 = dj1 − djr for j ∈ {h∗ + 1, ...,m − 1}.

In particular, dj(r+1) must be finite for 1 ≤ j ≤ h∗ − 1.

5See for instance Theorem 11.1 in Tijs (2003).
6Observe that the case where neither (12) nor (13) hold as equality is considered.
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On the other hand, since also (11) is tight at x,

xh∗1 = dmr +

m−1∑

j=1

dj1 −

m−1∑

j=1,j 6=h∗

xj1

= dmr +

m−1∑

j=1

dj1 −

h∗−1∑

j=1

(
dj1 − dj(r+1)

)
−

m−1∑

j=h∗+1

(dj1 − djr)

= dh∗1 +

h∗−1∑

j=1

dj(r+1) +

m∑

j=h∗+1

djr.

Observe that the above expression of xh∗1 can be rearranged either to

(17) xh∗1 = dh∗1 − dh∗r + φ(h∗ − 1)

or, whenever dh∗(r+1) > −∞, to

(18) xh∗1 = dh∗1 − dh∗(r+1) + φ(h∗).

Being x ∈ Cm−1(ωAd), xh∗1 must satisfy (10), that is xh∗1 ≥ dh∗1 − dh∗r, which

implies φ(h∗ − 1) ≥ 0. Moreover, again since x ∈ Cm−1(ωAd), xh∗1 must satisfy

(13), i.e. xh∗1 ≤ dh∗1−dh∗(r+1), which, at its turn, implies that, regardless dh∗(r+1)

is finite or not, φ(h∗) = 0. Moreover, since φ is non-increasing, we obtain that

φ(q) ≥ 0 for 0 ≤ q ≤ h∗ − 1 and φ(q) = 0, for h∗ ≤ q ≤ m.

Let now t∗ ∈ {0, ..., h∗−1} be the unique integer such that φ(q) > 0 for 0 ≤ q ≤ t∗

and φ(q) = 0 for t∗ + 1 ≤ q ≤ m. That is, t∗ is the largest value such that φ(t∗) is

positive. Then, if π = (1, ...,m), applying Proposition 5 we obtain that

(19) xπ
j1 = dj1 − dj(r+1) for 1 ≤ j ≤ t∗,

(20) xπ
(t∗+1)1 = d(t∗+1)1 − d(t∗+1)r + φ(t∗),

(21) xπ
j1 = dj1 − djr for t∗ + 2 ≤ j ≤ m.
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To compare vectors x and xπ, since both of them belong to C(ωAd), it is enough

to compare the payoff to agent of index 1 for the first m − 1 types -applying (7),

(8) and (9) to obtain the payoffs to the remaining agents-.

Next, we show that xj1 = xπ
j1 for all 1 ≤ j ≤ m − 1. On one hand, since

xπ ∈ C(ωAd), by (13) and (19), we have that xπ
j1 ≤ dj1 − dj(r+1) = xj1 for

1 ≤ j ≤ h∗−1. On the other hand, let us prove that xπ
j1 = xj1 for h∗ ≤ j ≤ m−1.

We distinguish two cases depending on t∗ ∈ {0, ..., h∗ − 1}. If t∗ = h∗ − 1, by

(20) and (17), we know that xπ
h∗1 = dh∗1 − dh∗r + φ(h∗ − 1) = xh∗1. Moreover,

in this case, by (21) and (16), we also have that xπ
j1 = dj1 − djr = xj1 for all

h∗ + 1 ≤ j ≤ m − 1. Lastly, if t∗ < h∗ − 1, again by (21) and (16), we obtain

directly that xπ
j1 = xj1 for all h∗ ≤ j ≤ m − 1.

Since we have proved that xj1 ≤ xπ
j1 for all 1 ≤ j ≤ h∗ − 1 and xj1 = xπ

j1 for all

h∗ ≤ j ≤ m − 1 and x, xπ ∈ C(ωAd), then x = xπ, finishing the proof of Case 1.

Case 2. The m − 1 inequalities that are tight at x are among (12) and (13) for all

1 ≤ j ≤ m − 1.

As we can relabel the different types of agents for convenience, we can assume

without loss of generality that, for all 1 ≤ j ≤ m− 1, inequalities (13) are tight at

x. In particular, dj(r+1) must be finite for 1 ≤ j ≤ m − 1. Since xπ ∈ C(ωAd), by

(13) and (16), we have that xπ
j1 ≤ dj1−dj(r+1) = xj1 for 1 ≤ j ≤ m−1. Moreover,

since also x ∈ C(ωAd), like in the above case, we obtain x = xπ.

• Ext(C(ωAd)) ⊇ {xπ(ωAd)}π∈Π.

Without loss of generality suppose that π = (1, ...,m). Recall that xπ(ωAd) belongs

to the core. From Definition 4 we know that xπ
1i = ωAd(N) − ωAd(N\{1-i}) for all
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1 ≤ i ≤ n. Therefore, for all 1 ≤ i ≤ n,

xπ(N\{1-i}) = xπ(N) − xπ
1i

= ωAd(N) − (ωAd(N) − ωAd(N\{1-i})) = ωAd(N\{1-i}).

Next, again from Definition 4 we know that xπ
2i = ωAd(N\{1-i}) − ωAd(N\{1-i, 2-i})

for all 1 ≤ i ≤ n. Therefore for all 1 ≤ i ≤ n.

xπ(N\{1-i, 2-i}) = xπ(N) − xπ
1i − xπ

2i

= ωAd(N) − (ωAd(N) − ωAd(N\{1-i}) −

(ωAd(N\{1-i}) − ωAd(N\{1-i, 2-i}))

= ωAd(N\{1-i, 2-i}).

And so on and so forth. In short, within the set of inequalities that define the core

C(ωAd), we have found n × m linearly independent inequalities that hold as equality.

Therefore xπ(ωAd) must be an extreme core point.

Notice that, as we had already stated, for truncated additive m-SAGs, the set of sector-

marginal vectors, {xπ(ωAd)}π∈ΠJ , does not depend on the optimal matching chosen, since

neither the set of extreme point of the core, Ext {C(ωAd)}, nor the proof of Theorem 6 do.

To illustrate the above result consider the 3-SAP introduced in Example 2. The set

Ext(C(ωAd)) is obtained from the initial six possible sector marginal worth vectors.

π
J xπ ∈ C(ωAd) xπ ∈ C2(ωAd)

(1, 2, 3) (5, 0;0, 0; 0, 0) (5;0)

(1, 3, 2) (5, 0;0, 0; 0, 0) (5;0)

(2, 1, 3) (3, 0;2; 0; 0, 0) (3;2)

(2, 3, 1) (1, 0;2, 0; 2, 0) (1;2)

(3, 1, 2) (3, 0;0, 0; 2, 0) (3;0)

(3, 2, 1) (1, 0;2, 0; 2, 0) (1;2)
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Observe that x(1,2,3) = x(1,3,2). That is, sector-marginal vectors might coincide for

different orderings. Also notice that the number m! is an upper bound for the number

of extreme points of the core of any truncated additive m-SAG. However, for m-SAGs that

are not truncated additive Theorem 6 fails to hold7.

Hamers et al. (2002) prove that the classical assignment games satisfy the CoMa-property.

This property says that any extreme core allocation is a marginal worth vector. However,

that result does not extend to arbitrary multi-sided assignment games (even if they are

supermodular). Indeed, consider the (supermodular) 3-SAP (N1,N2,N3;A) given by the

following matrix, where the optimal matching is marked in bold:

A =




3

0

1

1







0

0

0

2


 .

It can be checked that x = (1, 1; 2, 0; 0, 1) ∈ Ext {C(ωA)} and that the marginal contributions

of agents 1-1, 1-2, 2-1, 2-2, 3-1 and 3-2 are respectively 3, 2, 3, 2, 3 and 2. Then, observe

that no agent attains her marginal contribution in x. In particular, x cannot be a marginal

worth vector.

Next, using Theorem 6, we prove that any truncated additive m-SAG does satisfy the

CoMa-property.

Theorem 7 Let (N,ωAd) be a truncated additive m-SAG. Then it satisfies the CoMa-property.

Proof. The proof consists on associating to each order of types (of agents) π ∈ ΠJ an

ordering of agents θπ ∈ Θ(N) such that xπ and mθπ

coincide. Without loss of generality

suppose π = (1, 2, ...,m). Then let θπ be the ordering that is both decreasing in indices (of

agents) and also decreasing in types, i.e.

θπ = (m-n, ..., 1-n, ... ... ,m- (r + 1) , ..., 1- (r + 1) ,m-r, ..., 1-r, ... ... ,m-1, ..., 1-1).

7The supermodular and monotonic assignment game where A is defined by A(1, 1) = 8, A(2, 1) = 2,

A(1, 2) = 3 and A(2, 2) = 2 can be taken as a counterexample. It can be checked that the core of such game

has dimension 2 and four extreme points, and therefore {xπ(ωA)}π∈Π  Ext(C(ωA)). See Sherstyuk (1999)

for a formal definition of monotonic m-SAGs.
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Recall that, for any nonemtpy coalition S of agents, ωAd(S) is obtained by partioning S in

’ranking-ordered’ essential coalitions.

Next we calculate mθπ

ji . On one hand, suppose that 1 ≤ i ≤ r. First suppose that j < m.

In such case, mθπ

ji = ωAd({k-l : θ(k-l) ≤ θ(j-i)}) − ωAd({k-l : θ(k-l) > θ(j-i)}) is equal to

ωAd({m-n, ...., 1-n, ...,m-i, ...., (j + 1) -i, j-i})

−ωAd({m-n, ...., 1-n, ...,m-i, ...., (j + 1) -i})

=
r∑

l=i

max



0,

j−1∑

q=1

dq(l+1) +
m∑

q=j

dql



 −

r∑

l=i

max



0,

j∑

q=1

dq(l+1) +
m∑

q=j+1

dql





=

r−1∑

l=i




j−1∑

q=1

dq(l+1) +

m∑

q=j

dql


 + φ(j − 1) −

r−1∑

l=i




j∑

q=1

dq(l+1) +

m∑

q=j+1

dql


 − φ(j)

= dji − djr + φ(j − 1) − φ(j),

where again the penultimate equality holds because of (3). Using Proposition 5 we obtain

mθπ

ji = xπ
ji for 1 ≤ i ≤ r. The case j = m can be analogously proved and it is left to the

reader. On the other hand, suppose now that r + 1 ≤ i ≤ n. From (3) and the way d is

arranged,

mθπ

ji = ωAd({m-n, ...., 1-n, ...,m-i, ...., (j + 1) -i, j-i})

−ωAd({m-n, ...., 1-n, ...,m-i, ...., (j + 1) -i})

= 0 − 0 = 0.

Again, by Proposition 5 we obtain mθπ

ji = xπ
ji for r + 1 ≤ i ≤ n. That is, we have proved that

{xπ(ωAd)}π∈Π ⊆ {xθ(ωAd)}θ∈Θ(N1∪...∪Nm). Theorem 6 completes the proof.

Finally, Demange (1982) and Leonard (1983) show that any agent of a classical assignment

game attains her marginal contribution in the core. Again, this result does not extend to

arbitrary multi-sided assignment games8. Now, consider the 3-SAP (observe that it is not

a truncated additive m-SAP!) given by the following matrix, where the optimal matching is

8Sherstyuk (1999) shows that if a supermodular m-SAP (N1, ..., Nm; A) is either monotonic or a valuation

then there is at least one core allocation such that all agents of one type get their marginal contribution.
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marked in bold:

(22) A =




1

0

0

0

0

0

0

0

0







0

0

0

0

10

1

0

0

0







0

2

0

2

1

0

0

0

0




.

It can be checked that the marginal contribution of agent 3-2 is 9 and by means of linear

programming the maximum payoff that agent 3-2 can get in the core is 7.

5 Dimension of the core

The dimension of the core of two-sided assignment games is an issue that has captured some

interest. For instance, Nuñez and Rafels (2008) characterize the dimension of the core of any

two-sided assignment game in terms of the number of equivalence classes of the transitive

closure of a reflexive and symmetric binary relationship defined on any of the two types of

agents. However, as far as we know, nothing is known yet about the dimension of the core of

an arbitrary multi-sided assignment game. This section is devoted to study the dimension of

the core of the truncated additive m-SAPs, which represents a benchmark from which obtain

more general results.

Before we prove the main result of the section, and for the sake of simplicity, we show that

the core of an truncated additive multi-sided assignment game can be bijected to a specific

region of Rm.

Proposition 8 Let (N1, ...,Nm;Ad) be a truncated additive m-SAP. Then, C(ωAd) can be

bijected to the region Cm(ωAd) of Rm defined on the variables x11, ..., xm1 by the intersection

of the m-cube
∏m

j=1[dj1 − djr, dj1 − dj(r+1)] with the hyperplane
∑m

j=1 xj1 =
∑m

j=1 dj1, where

we assume that, for 1 ≤ j ≤ m, dj(r+1) = −∞, if r = n.

Proof. From Proposition 3, it is enough to prove that there is a bijection between

Cm−1(ωAd) and Cm(ωAd).
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On one hand, let xm−1 = (x11, ..., x(m−1)1) ∈ Cm−1(ωAd). Then let

xm = (x11, ..., x(m−1)1,

xm1︷ ︸︸ ︷
m∑

j=1

dj1 −
m−1∑

j=1

xj1) ∈ R
m.

Obviously, there is a bijection between xm−1 and xm. Then we claim that xm ∈ Cm(ωAd).

Indeed, from definition we have that
∑m

j=1 xj1 =
∑m−1

j=1 dj1. Then, it only remains to check

that dm1 − dmr ≤ xm1 ≤ dm1 − dm(r+1). However, using that xm1 =
∑m

j=1 dj1 −
∑m−1

j=1 xj1

the two later inequalities hold respectively from (11) and (12).

On the other hand, let xm = (x11, ..., xm1) ∈ Cm(ωAd). We claim that xm−1 = (x11, ..., x(m−1)1) ∈

Cm−1(ωAd). Indeed, we only have to prove that (11) and (12) hold. From dm1−dmr ≤ xm1 ≤

dm1 − dm(r+1) and
∑m

j=1 xj1 =
∑m−1

j=1 dj1 we have that

dm1 − dmr ≤ dm1 +

m−1∑

j=1

dj1 −

m−1∑

j=1

xj1 ≤ dm1 − dm(r+1),

which, rearranging terms, is equivalent to

dmr +
m−1∑

j=1

dj1 ≥
m−1∑

j=1

xj1 ≥ dm(r+1) +
m−1∑

j=1

dj1.

Hence, (11) and (12) hold.

Next, we introduce two definitions.

Definition 9 Given a truncated additive m-SAP (N1, ...,Nm;Ad), we say that agent j-i is

active9 if dji > dj(r+1), where, if r = n, we assume that dj(r+1) = −∞ for all 1 ≤ j ≤ m.

Let Λj be the set of active agents of type j, for all 1 ≤ j ≤ m. Active agents are those

that, in any optimal matching, contribute to create a strictly positive worth.

Definition 10 Given a truncated additive m-SAP (N1, ...,Nm;Ad), we say that type j is

degenerate if |Λj | < r. We denote by md the number of degenerate types of a m-SAP.

9In Nuñez and Rafels (2005) an agent j-i is said to be active if i ≤ r. Otherwise, the agent is inactive.

This definition assumes that ’ties’ between agents productivities are broken. However, if djr = dj(r+1) agents

j-r and j-(r + 1) should be interchangeable. Thus, in ours both these agents are said to be inactive.
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Observe that a type j is degenerate if and only if r < n and djr = dj(r+1). The following

corollary shows that such types of agents are important because agents belonging to them

always get a constant payoff in the core.

Corollary 11 Let (N1, ...,Nm;Ad) be a truncated additive m-SAP. Then, each agent of a

degenerate type j receives a constant payoff in the core. Moreover, if j-i is active her payoff

is dji − djr. Otherwise, she receives 0.

Proof. Trivial from Proposition 8.

That is, although r agents of each type contribute to generate a strictly positive profit, in

a degenerate type there are less than r agents that can appropriate of some of this positive

profit.

An hyperplane π : a1x1 + ... + akxk = b of Rk separates the space Rk into two half-spaces

π+ : a1x1 + ... + akxk ≥ b and π− : a1x1 + ... + akxk ≤ b. Then, we say that a point

z = (z1, ..., zk) ∈ Rk is above (resp. below) the hyperplane π if it belongs to π+ (resp. π−).

Lastly, if z belongs to π+ (resp. π−) but not to π− (resp. π+) then we say it is strictly above

(resp. below) π.

Now we are in position to prove the main result regarding the dimension of the core.

Theorem 12 Let (N1, ...,Nm;Ad) be a truncated additive m-SAP. Then, either C(ωAd) is

a point or it has dimension10 m− 1−md. Moreover, the necessary and sufficient conditions

for C(ωAd) to be a point are either ”r < n and
∑m

j=1 dj(r+1) = 0” or ”md = m − 1”.

From Proposition 8, to find the dimension of C(ωAd) it is enough to study the region

Cm(ωAd) of Rm. Also observe that a degenerate type reduces the dimension of the m-cube

∏m
j=1[dj1 − djr, dj1 − dj(r+1)] in one unit. Let π :

∑m
j=1 xj1 =

∑m
j=1 dj1. Because of (3), is is

straightforward to check that the ’inferior’ vertex of the m-cube (d11 − d1r, ..., dm1 − dmr) is

strictly below π, whereas the ’superior’ vertex of the m-cube (d11 −d1(r+1), ..., dm1 −dm(r+1))

10Following Rockafellar (1970), recall that the dimension of the core as a convex polytope is the dimension

of the minimal affine variety in which it is contained.
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is above π. On one hand, if r < n and md < m−1 the ’superior’ vertex is below π if and only

if
∑m

j=1 dj(r+1) = 0. In such case, the only point of Cm(ωAd) is the ’superior’ vertex itself.

Furthermore, when this last condition does not hold, the (nonempty) intersection of π with

the m-cube is a space with dimension equal to the dimension of the m-cube minus 1. Lastly,

from
∑m

j=1 xj1 =
∑m−1

j=1 dj1 we know that if md = m − 1, i.e. if m − 1 variables are constant

in Cm(ωAd), the remaining variable is also constant in Cm(ωAd) and therefore the core must

reduce to one point.

Notice that when md = m−1 the core C(ωA) reduces to a point although
∑m

j=1 dj(r+1)
= 0

needs not hold. To a better understanding the reader may find the core of the truncated

additive 3-SAP generated from d = (1, 0; 1, 1, 1; 1, 1, 1) and check that it reduces to (3, 2; 0, 0, 0; 0, 0, 0).

Corollary 13 Let (N1, ...,Nm;Ad) be a truncated additive m-SAP. Then, C(ωAd) has at

most dimension m − 1.

Proof. Trivial from Theorem 12. Once m fixed, the highest dimensional core is obtained

by considering a truncated additive m-SAP with no degenerate types.

In particular, we obtain that the core of a 2-sided Böhm-Bawerk horse market is a segment.

Corollary 14 For any 0 ≤ k ≤ m− 1 there is a truncated additive m-SAP (N1, ...,Nm;Ad)

such that dim(C(ωAd)) = k.

Proof. Observe that for any given number of types m, by considering a suitable number of

degenerate types we can find truncated additive m-SAPs such that the dimension of its core

ranges from 0 to m − 1.

6 Competitive prices of multi-sided assignment markets

In this final section, since it is costless to our purpose, we consider arbitrary assignment

markets, in which goods may not be homogeneous. The only difference with respect to

the case of homogeneous goods is that the willingness-to-pay of any buyer may depend on
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who she buys the objects from, i.e. we must use wim
i1...im−1

(instead of just wim) to refer

to the willingness-to-pay of the im-th buyer for the (m − 1)-tuple of goods (i1, ..., im−1) ∈

N1 × ... × Nm−1. Then, an arbitrary assignment market is denoted by AM(c1, ..., cm−1;w),

where w ∈ Mnm×k(R+), k = n1 · ... · nm−1 is the matrix of willingness-to-pay of buyers

and, for all 1 ≤ j ≤ m − 1, cj ∈ Rnj is the vector of unitary costs of firms of type

j. We can associate to any m-sided market AM(c1, ..., cm−1;w) a m-SAP (N1, ...,Nm;A),

where N1, ...,Nm−1 are the sets of firms of different sectors, Nm is the set of buyers and

A(i1, ..., im) = max
{

0, wim
i1...im−1

−
∑m−1

j=1 cjij

}
, for all (i1, ..., im) ∈ N1 × ... × Nm. Without

loss of generality, we will assume that there is the same number of buyers and firms of each

sector.

In general multi-sided assignment markets, prices are the relevant variables, together

with the quantity (0 or 1) of units of a good sold by each firm. Roth and Sotomayor

(1990) introduce the notion of competitive prices and show that, for any two-sided assignment

market, such prices can always be obtained from core allocations. A price that is obtained

from a core allocation -in a way that will be shown below- will be called a core price. We will

prove that, in fact, for arbitrary m-sided assignment markets (i.e. either with homogeneous

goods or not), the set of competitive prices coincides with the set of core prices.

Formally, given an arbitrary m-sided assignment market AM(c1, ..., cm−1;w) and its

associated m-SAP (N1, ...,Nm;A), for each x ∈ C(ωA) ⊂ Rnm
+ we define a unique vector

of prices (one price for each firm) px = (px
1 , ..., px

m−1) ∈ R
n(m−1)
+ by px

ji = xji + cji, for

1 ≤ j ≤ m − 1 and 1 ≤ i ≤ n. We say that P (c1, ..., cm−1;w) = {px : x ∈ C(ωA)} is the set

of core prices of AM(c1, ..., cm−1;w).

On the other hand, we follow Roth and Sotomayor (1990) and define the demand set of
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the i-th buyer at prices p = (p1, ..., pm−1) ∈ R
n(m−1)
+ by11

Di(p) = arg max(i1,...,im−1)∈N1×...×Nm−1



wi

i1...im−1
−

m−1∑

j=1

pjij > 0



 .

We say that a price vector p ∈ R
n(m−1)
+ is competitive if 1) pji ≥ cji for 1 ≤ j ≤ m − 1 and

1 ≤ i ≤ n, and there is a matching12 µ = {(µ1(i), ..., µm−1(i), i) : 1 ≤ i ≤ n} ∈ M(N1, ...,Nm)

such that 2) if Di(p) 6= ∅ then (µ1(i), ..., µm−1(i)) ∈ Di(p) and 3) if Di(p) = ∅ then pjµj(i)
=

cjµj(i)
, for all 1 ≤ j ≤ m − 1. Any matching µ satisfying 2) and 3) is said to be compatible

with p. We next prove that competitive prices are core prices, and vice versa.

Theorem 15 Let AM(c1, ..., cm−1;w) be an arbitrary m-sided assignment market. Then,

the set of core prices coincides with the set of competitive prices.

Proof. Let (N1, ...,Nm;A) be the m-SAP associated to AM(c1, ..., cm−1;w). First we prove

that if p ∈ Rn(m−1) is a competitive price then it is a core price, that is, p = px for some

x ∈ C(ωA). Indeed, suppose, without loss of generality, that µ = {(l, ..., l) : 1 ≤ l ≤ n} is a

compatible matching with p. Then define xp ∈ Rnm by xp
ji = pji − cji, for all 1 ≤ j ≤ m − 1,

and xp
mi = wi

i...i −
∑m−1

j=1 pji if Di(p) 6= ∅ and xp
mi = 0 otherwise, for all 1 ≤ i ≤ n. Since p

is competitive, and by the definition of the demand set, xp ≥ 0. Furthermore, we have that,

for all (i1, ..., im−1) ∈ N1 × ... × Nm−1,

m−1∑

j=1

xp
jij

+ xp
mi ≥

m−1∑

j=1

(
pjij − cjij

)
+ wi

i1...im−1
−

m−1∑

j=1

pjij = wi
i1...im−1

−
m−1∑

j=1

cjij ,

which, by nonnegativeness of xp, implies that
∑m−1

j=1 xp
jij

+ xp
mi ≥ A(i1, ..., im−1, i), where the

inequality is tight if (i1, ..., im−1, i) = (i, ..., i, i). Hence, xp(N) ≥
∑

(i1,...,im)∈µ′ A(i1, ..., im)

for any µ′ ∈ M(N1, ...,Nm) and, therefore, xp(N) ≥ ωA(N). Lastly, since p is competitive

11Formally, Di(p) corresponds to those (i1, ..., im−1) ∈ N1 × ...×Nm−1 maximizing wi
i1...im−1

−
∑m−1

j=1 pjij
,

whenever this last expression is positive. Otherwise, Di(p) will be the empty set.
12We follow Quint’s (1991) notation, µj(i) being the agent of type j that is assigned together with agent

m-i under µ, for all 1 ≤ j ≤ m − 1.
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we have that, if Di(p) = ∅, then xp
ji = pji − cji = 0, for all 1 ≤ j ≤ m − 1. Hence,

xp(N) =
n∑

i=1,
Di(p)6=∅

xp
ji =

n∑

i=1,
Di(p)6=∅

A(i, ..., i, i) ≤ ωA(N).

In conclusion, xp ∈ C(ωA) and p is a core price, since we trivially have that pxp
= p.

Second, we prove that if px is a core price, i.e. px
ji = cji + xji for all 1 ≤ j ≤ m − 1

and 1 ≤ i ≤ n, where x ∈ C(ωA), then it is a competitive price. Indeed, suppose without

loss of generality that µ = {(l, ..., l) : 1 ≤ l ≤ n} is an optimal matching and that there is

s ∈ {1, ..., n} such that A(i, ..., i) > 0 for 1 ≤ i ≤ s and A(i, ..., i) = 0 otherwise13. Since

x ∈ C(ωA), we have that px − c = x ≥ 0. Next we prove that µ is a compatible matching

with px. Indeed, if 1 ≤ i ≤ s we have that, for all (i1, ..., im−1) ∈ N1 × ... × Nm−1,

wi
i1...im−1

−
m−1∑

j=1

px
jij

= wi
i1...im−1

−
m−1∑

j=1

xjij −
m−1∑

j=1

cjij − xmi + xmi

≤ wi
i1...im−1

− A(i1, ..., im−1, i) −
m−1∑

j=1

cjij + xmi

= wi
i1...im−1

−

m−1∑

j=1

cjij − max



0, wi

i1...im−1
−

m−1∑

j=1

cjij



 + xmi

≤ xmi,

where the first inequality holds since x ∈ C(ωA) and is tight if (i1, ..., im−1, i) = (i, ..., i, i), and

the last inequality is tight if wi−
∑m−1

j=1 cjij ≥ 0. Since 1 ≤ i ≤ s, we have that A(i, ..., i) > 0,

which implies that (i, ..., i) ∈ Di(p), that is therefore nonempty. Lastly, if s + 1 ≤ i ≤ n, we

have that
∑m

j=1 xji = A(i, ..., i) = 0, which implies that px
ji = cji for all i, j, 1 ≤ j ≤ m − 1

and s + 1 ≤ i ≤ n.

Finally, we focus our attention on the particular case of m-sided assignment markets with

homogeneous goods. For those markets, their associated m-SAPs are truncated additive

(see Section 3). Hence, we are in the position to describe how the set of competitive

prices for these type of markets is. Specifically, by Theorem 3 we know that, for any m-

sided market with homogeneous goods, the set of core prices -or equivalently, the set of

13When the m-SAP is truncated additive, s is precisely defined in (3) and is denoted by r.
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competitive prices- is always nonempty. Moreover, suppose without loss of generality that the

truncated additive m-SAP associated to an arbitrary assignment market with homogeneous

goods AM(c1, ..., cm−1;w) is (N1, ...,Nm;Ad), where vector d is equal to (−c1, ...,−cm−1, w)

and w is the vector of willingness-to-pay of buyers -it is a vector rather than a matrix because

goods are homogeneous-. Assuming that d1, ..., dm are arranged (as usual) in a non-decreasing

way, let r be the largest 1 ≤ i ≤ n such that wi −
∑m−1

j=1 cji > 0. Then, by (7), (8), (9) and

Theorem 3, for each competitive price p we have that 1) all firms with index not greater than r

of the same type, j, must charge the same price, i.e. pj1 = ... = pjr = pj for all 1 ≤ j ≤ m−1

and 2) any firm with index greater than r must charge its own unitary cost, i.e. pji = cji

for 1 ≤ j ≤ m − 1 if r + 1 ≤ i ≤ n.14 Parameter r accounts for the maximum number of

benefit-generating transactions that can occur simultaneously in the market. Furthermore,

also by Theorem 3, p1, ..., pm−1 must be such that wr+1 ≤
∑m−1

j=1 pj ≤ wr and cr
j ≤ pj ≤ cr+1

j

for all 1 ≤ j ≤ m − 1.15

14We have not used p1, ..., pm−1 instead of x11, ..., x(m−1)1 throughout the paper because, as we have already

shown in Section 3, truncated additive m-SAPs embody more general frameworks than m-sided assignment

markets with homogeneous goods.
15If r = n, the restrictions are

∑m−1
j=1 pj ≤ wr and cr

j ≤ pj .
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7 Appendix

Equations (4) form a shstem of rm linear equations on the r·m variables x11, ..., x1r, ..., xm1, ..., xmr :

(23) Hx = z

where H ∈ Mrm×r·m({0, 1}) is obtained by joining all the rows hk ∈ {0, 1}r·m satisfying that

for any 1 ≤ j ≤ m there is only one non-zero element hk
jij

and zt ∈ Rr·m is defined by

zk =
∑m

j=1 djijwhere {i1, ..., im} are the non-zero elements of tk, for all k = 1...rm. Then,

Lemma 16 The rank of H is 1 + m · (r − 1).

Proof. Consider the following 1+m ·(r−1) vectors (where the semicolon is used to separate

the payoffs to the agents of different types):

v1,1T

= (1, 0, 0, ..., 0; 1, 0, ..., 0; ...; 1, 0, ..., 0)

v1,2T

= (0, 1, 0, ..., 0; 1, 0, ..., 0; ...; 1, 0, ..., 0)

v1,3T

= (0, 0, 1, ..., 0; 1, 0, ..., 0; ...; 1, 0, ..., 0)

...

v1,rT

= (0, 0, ..., 0, 1; 1, 0, ..., 0; ...; 1, 0, ..., 0)

v2,2T

= (1, 0, 0, ..., 0; 0, 1, ..., 0; ...; 1, 0, ..., 0)

...

v2,rT

= (1, 0, 0, ..., 0; 0, 0, ..., 1; ...; 1, 0, ..., 0)

...

vm,1T

= (1, 0, 0, ..., 0; 1, 0, ..., 0; ...; 0, 1, ..., 0)

...

vm,rT

= (1, 0, 0, ..., 0; 1, 0, ..., 0; ...; 0, 0, ..., 1).

By definition, every vj,i satisfies that for any 1 ≤ k ≤ m there is only one non-zero element

vj,i
kik

. Hence, all of them are rows of H.

32



On one hand, we claim that the above 1 + m · (r − 1) vectors are linearly independent.

Indeed, suppose they are not. Then there must be a vector of constants

−→
λ = (λ11, ..., λ1r, λ22, .., λ2r, ..., λm2, .., λmr) 6=

−→
0 T

1+m·(r−1)

such that

λ11v
1,1 +

m∑

k=1

r∑

i=2

λjiv
j,i =

−→
0 T

r·m.

Then it is easy to check that, for all 1 ≤ j ≤ m and 2 ≤ i ≤ r, λji = 0 whereas

λ11 +

m∑

k=2

r∑

i=2

λki = 0.

Therefore λ11 = 0. Hence we have that
−→
λ =

−→
0 T

R, which is a contradiction.

On the other hand, take any other row v of H. From definition, for each type only one

coordinate of v related to this type is non-zero. Let i1, ..., im be such that for any 1 ≤ j ≤ m

and 1 ≤ ij ≤ r, vjij is the only non-zero component of type j. For simplicity of notation we

have use v2,1 = ... = vm,1 to refer to the same vector v1,1. Then it is easy to check that

m∑

j=1

vj,ij − (m − 1) · v1,1 = vT .
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