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Abstract

From a managerial point of view, the more efficient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be
used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop
Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP
algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most
efficient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their
performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic ‘common
sense’ rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new
operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased
randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is
attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding
poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed
computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and
compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art
metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top
ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number
generator.
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1. INTRODUCTION

The Permutation Flowshop Sequencing Problem (PFSP) is a
well-known scheduling problem that can be described as fol-
lows: a set J of k independent jobs has to be processed on a
set M of m independent machines. Every job j ∈ J requires a
given fixed processing time pi j ≥ 0 on every machine i ∈ M.
Each machine can execute at most one job at a time, and it
is assumed that all the jobs are processed by the machines in
the same order. The classical goal is to find a single sequence
for processing the jobs in the shop so that a given criterion is
optimized. The criterion most commonly used is the minimiza-
tion of the maximum completion time, or makespan, denoted
by Cmax. Figure 1 illustrates this problem for a simple case of
k = 3 jobs and m = 3 machines.

The described problem is usually denoted as Fm|prmu|Cmax

and it is a combinatorial problem with k! possible sequences
which, in general, is NP-complete [38]. Similar to what has
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(Quim Castellà), barry.brian.barrios@gmail.com (Barry B. Barrios)

happened with other combinatorial problems, a large number
of different approaches have been developed to deal with the
PFSP. These approaches range from the use of exact optimiza-
tion methods, such as mixed integer programming or branch
and bound algorithms, for solving small-sized problems to the
use of heuristics and metaheuristics that provide near-optimal
solutions for medium and large-sized problems [40]. Most of
these methods focus on minimizing makespan. Some of them
have reached outstanding efficiency levels, but they are still us-
ing several parameters that usually require non-trivial and time-
costly fine-tuning processes. As some authors recognize (e.g.
[49, 11, 48, 27, 1, 17, 8]), the proper selection of these param-
eters and their specific values have a significant impact on the
algorithm’s performance, i.e.: the efficiency of these methods
tend to be quite sensitive to the values assigned to each param-
eter. For instance, while describing a new Genetic Algorithm
(GA) for solving the hybrid flow shop problem, Engin et al.
[11] stated: “It is well known that the GAs’ efficiency depends
to a high degree upon the selection of the control parameters.
The determination of the suitable settings for the control param-
eters of any GA is a very difficult task. The GA’s search process
is controlled with multiple factors (control parameters) whose
effects will possibly interact with each other”. Thus, statisti-
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Figure 1: Flowshop Sequencing Problem.

cal techniques such as the design of experiments (DOE) need
to be carried out before obtaining an efficient algorithm. More-
over, even when the parameter configuration process has been
successful, it is frequent to find ‘magic numbers’ inside the fi-
nal algorithm. Those numbers are obtained by experimentation,
and they correspond to the specific values of the parameters that
provide the best possible algorithm performance. However, for
decision-makers, who are not usually experts in metaheuristics,
it is difficult to understand the real meaning of such particular
values and, therefore, the algorithm just becomes a black-box
to them. This lack of transparency reduces the method’s cred-
ibility and, consequently, makes the algorithm less interesting
for real-life applications [39]. This relationship between sim-
plicity and applicability has also been noticed by other authors.
For instance, Zobolas et al. [49] refer to their algorithm in the
following terms: “...it requires very few user-defined parame-
ters, rendering it applicable to real-life flow shop scheduling
problems”.

For that reason, the main contribution of this article is the de-
sign of an efficient, simple, and parameter-free (ESP) algorithm
for solving the PFSP. The interest in developing parameter-free
algorithms for dealing with different combinatorial optimiza-
tion problems is not new. For example, Matsui and Yamada
[27] developed a parameter-free GA for solving the job-shop
scheduling problem. As we will discuss in more detail, our
algorithm is based on an Iterated Local Search (ILS) frame-
work [26], and it does not require any particular fine-tuning
process since it employs basic ‘common sense’ rules for the lo-
cal search, perturbation, and acceptance criterion stages of the
ILS metaheuristic. In particular, a new operator which com-
bines a swap (interchange) movement with a classical ‘shift-
to-left’ movement is introduced for the perturbation process,
thus avoiding any ‘magic number’ or complex operators. Also,
instead of using a traditional Simulated Annealing-type accep-
tance criterion, which performs very well but implies some kind
of indirect behavior, a new and more transparent rule is de-
fined for this stage. Another important characteristic of our
approach is the biased randomization process of the initial so-
lution, which employs a decreasing triangular distribution to
randomly generate different alternative initial solutions based
on the well-known heuristic from Nawaz, Enscore and Ham
(NEH) [30]. Thus, diversification of the local search starting
point is attained in a simple, fast, and efficient manner. This

diversification stage aims at avoiding poorly designed starting
points and can provide benefits when applying parallel and dis-
tributed computing techniques. This randomization approach
is similar to the one proposed in Greedy Randomized Adaptive
Search Procedure (GRASP) metaheuristics [36].

The paper is organized as follows: Section 2 offers a basic
literature review on the flow-shop problem. Sections 3 briefly
describes the main ideas characterizing GRASP and ILS meta-
heuristics, since our approach could be considered a hybridiza-
tion of both types of algorithms. Section 4 describes our method
in detail. Sections 5 and 6 discuss two extensive computa-
tional experiments, which have been carried out to test the effi-
ciency of our algorithm and compare it against state-of-the-art
approaches. Finally, Section 7 contains the conclusions of the
paper.

2. LITERATURE REVIEW ON THE PFSP

A large number of heuristics and metaheuristics have been
proposed to solve the PFSP, mainly because of the difficulty en-
countered by exact methods to solve medium or large instances.
Most existing approaches focus on the objective of minimizing
makespan. Johnson [19] proposed a simple procedure to obtain
optimal sequences for the PFSP with two machines and three
machines. Campbell et al. [4] developed the so-called CDS
heuristic for solving the PFSP with more than two machines.
Dannenbring [10] also proposed several constructive and im-
provement heuristics for the general problem. Nawaz et al. [30]
introduced the NEH heuristic, which is commonly considered
as the best performing heuristic for the PFSP. Basically, what
the NEH heuristic proposes is to calculate the total processing
time required for each job -i.e. the total time each job requires
to be processed by the set of machines-, and then to create an
‘efficiency list’ of jobs sorted in a descending order according to
this total processing time. At each step, the job at the top of the
efficiency list is selected and used to construct the solution, that
is: the ‘common sense’ rule is to select first those jobs with the
highest total processing time. Once selected, a job is inserted
in the sorted set of jobs that are configuring the ongoing solu-
tion. The exact position that the selected job will occupy in that
ongoing solution is given by the minimum makespan criterion
following a ‘shift-to-left’ movement. Taillard [45] introduced
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a data structure that reduces the NEH complexity. Other inter-
esting heuristics are those from Suliman [44] or Framinan and
Leisten [16], which also consider several extensions of NEH
when facing other objectives than makespan. The NEH heuris-
tic is the commonly accepted method for the permutation flow-
shop problem under the makespan minimization criterion, and
it has been frequently used to provide an initial upper bound for
the best branch-and-bound algorithms [25, 7].

Different metaheuristic approaches have also been proposed
for the PFSP. Osman and Potts [31] used Simulated Annealing
(SA). Widmer and Hertz [47] proposed a Tabu Search (TS) al-
gorithm known as SPIRIT. Other Tabu Search algorithms also
make use of the NEH heuristic [45, 34, 28]. Also, Genetic Al-
gorithms based on the NEH heuristic have been proposed for
solving the PFSP [6, 35, 2]. Other metaheuristics, such as Ant
Colony Optimization, have been used to obtain optimal solu-
tions [5]. The efficiency of the previous procedures can be
checked looking at the best known solutions for the Taillard’s
benchmark instances [46].

What all the aforementioned work has in common is that the
algorithms proposed are relatively easy to code and therefore
the results can be reproduced without too much difficulty. In
addition, many of the above algorithms can be adapted to other
more realistic flowshop environments [40]. Additionally, there
are other highly elaborated hybrid techniques for solving the
PFSP. However, as Ruiz and Stützle [42] point out, “...they are
very sophisticated and an arduous coding task is necessary for
their implementation”. In other words, it is unlikely that they
can be used for solving realistic scenarios without direct sup-
port from the researchers that developed them. For a complete
description of heuristics and metaheuristics for the PFSP, we
refer to the reader to more specialized references [15, 18, 40].

In this paper, however, we will mainly focus on ILS-related
approaches. The ILS metaheuristic has been applied success-
fully to a variety of combinatorial optimization problems. In
some cases, ILS algorithms achieve extremely high perfor-
mance and even constitute the current state-of-the-art meta-
heuristics for some optimization problems. According to Burke
et al. [3], who compared ILS against several hyper-heuristics,
“...the implementation of iterated local search produced the best
overall performance. Interestingly, this is one of the most con-
ceptually simple competing algorithms, its advantage as a ro-
bust algorithm is probably due to two factors: (i) the simple yet
powerful exploration/explotation balance achieved by system-
atically combining a perturbation followed by local search; and
(ii) its parameter-less nature”. For a detailed review of existing
ILS applications we refer to [26]. Several versions of the ILS
metaheuristic have been applied to solve the PFSP. In particu-
lar, Stützle [43] proposed a simple yet efficient ILS approach
for this problem. Some years later, Ruiz and Stützle [42] de-
veloped the Iterated Greedy (IG) method, which can be seen
as an improved version of the Stützle’s ILS metaheuristic. IG
provides outstanding (state-of-the-art) results in terms of accu-
racy and speed and, for that reason, it deserves special attention.
Despite its relative simplicity, it is probably the best algorithm
developed so far for the PFSP. In [42], Ruiz and Stützle tested
IG against 11 different approaches -including various GA, TS,

and SA. The experimental results showed that IG was the best-
performing approach. Some other recent works relating the ILS
method to the PFSP can be found in [32, 3, 37]. However, to the
best of our knowledge, IG has been performing better than any
other algorithm (ILS-based or not) in all PFSP articles using
the Taillard’s benchmarks. During the last years, IG has be-
come the method of reference in the PSPF field and, therefore,
in this paper we compare our approach against both the ILS
and IG algorithms. Thus, for instance, in [49] the authors show
that their hybrid GA algorithm, NEGA-VNS, is able to com-
pete with HGA-RMA, another hybrid GA algorithm previously
developed by Ruiz et al. [41]. However, as Ruiz and Stützle
show in [42], IG is simpler and far superior to HGA-RMA.
Also, Ribas et al. [37] recently proposed several SA-based al-
gorithms to compete with IG, but their results show that IG uses
less parameters and performs better than their algorithms in all
classical benchmarks. Finally, Nagano et al. [29] tested their
GA approach against a number of GA-based approaches. Ta-
ble 3 in their paper is directly comparable to Table 3 in [42]
(shared authors, same CPU, same maximum computing times,
etc.). A comparison of both tables shows that IG outperforms
all considered metaheuristics.

Being relatively simple and yet extremely efficient, IG has
inspired other approaches for different combinatorial optimiza-
tion problems. For instance, Kahraman et al. [23] recently
developed a parallel greedy algorithm for the hybrid flow
shop scheduling problem which uses the IG’s destruction-
construction operator. Another example is that of Pan et al.
[32], who developed an IG-based algorithm for the no-wait flow
shop scheduling problem.

3. OVERVIEW OF THE GRASP AND ILS META-
HEURISTICS

Since the approach presented in this paper has some similar-
ities with GRASP and ILS metaheuristics -and to some extend
it can be seen as a hybridization of both-, these two families
of algorithms are briefly described next. For a recent review
of the GRASP and ILS methodologies the reader is referred to
[13, 14, 36] and [26] , respectively.

GRASP is a multi-start method designed to solve hard com-
binatorial optimization problems [12]. The basic methodology
consists of two phases: (a) a constructive phase that builds a
good but not necessarily locally optimal solution, and (b) a sec-
ond phase which consists of a local search procedure. The two
phases are repeated until a stopping criterion is reached, keep-
ing track of the best solution found overall the search. The
constructive phase builds step by step adding an element to a
partial solution following a greedy function. The selection of
the element to be added in each iteration is not deterministic
but subject to a randomization process. In that way, the repe-
tition of both phases leads to different solutions. The random-
ization process is usually controlled by a parameter that in the
simplest versions of GRASP is fixed along the execution of the
algorithm. A particularly interesting GRASP is the so-called
Reactive GRASP [33]. In this version of the methodology, the
parameter is not fixed along the running of the algorithm, but it

3



Figure 2: ILS general framework

is selected randomly from a set of discrete values. Initially, all
values have the same probability of being chosen. After each
iteration, we keep the value of the solutions, which were ob-
tained for each value of the parameter. After a certain number
of iterations, the probabilities are modified. Those correspond-
ing to values of the parameter which have produced good so-
lutions are increased and, conversely, those corresponding to
values producing low quality solutions are decreased.

The essential idea of Iterated Local Search lies in focusing
the search not on the full space of solutions but on a smaller
subspace defined by the solutions that are locally optimal for a
given optimization engine. Figure 2 shows the general frame-
work of the ILS procedure. To apply an ILS algorithm to an
optimization problem, the four main components of the method
must be specified in detail. These four components or processes
are: generate initial solution, local search, perturbation, and
acceptance criterion. For many applications, it is straightfor-
ward to first develop a basic version of ILS, since many of the
components are common to other metaheuristics. For example,
(i) one can start with a random solution; (ii) for most problems
a local search algorithm is readily available; (iii) for the pertur-
bation stage, a random move in a neighborhood of higher order
than the one used by the local search algorithm can be effec-
tive; and (iv) a first-improvement acceptance criterion can be
used. However, a state-of-the-art implementation requires the
definition of more advanced components and operators. Also,
the interaction among these components must be taken into ac-
count to improve the quality of the method.

In this work, we propose an ILS-based algorithm with in-
novative components and original combinations among them.
Moreover, our method, which will be described later in detail,
introduces some GRASP principles inside the initial solution
generation process of the ILS framework.

The main motivation to develop an ILS-based approach for
the PFSP is because this method has many of the desirable fea-
tures of a metaheuristic as described by Cordeau et al. [9]:
accuracy, speed, simplicity and flexibility. Most of the meta-

heuristics in the literature are measured against accuracy -the
degree of departure of the obtained solution value from the opti-
mal value-, and against speed -the computation time. However,
there are two other important attributes to be considered in any
metaheuristic: simplicity and flexibility. The simplicity is re-
lated to the number of parameters to be set and the facility to
be implemented. This is an important feature since the method
can be applied to different instances than the ones tested without
losing quality or performance and without the need of perform-
ing a long test run. Finally, flexibility is related to the possibility
of accommodating new side constraints and also with the adap-
tation to other similar problems.

In the next section, our ILS-based parameter-free method is
presented. By combining ILS with GRASP we try to balance,
in an efficient way, the four attributes described above, i.e.: ac-
curacy, speed, simplicity and flexibility. Regarding the GRASP
part, it can also be related to Monte Carlo simulation or, sim-
ply, random sampling from a non-uniform distribution. In some
recent works, Juan et al. [22, 21] described the application of
simulation-based techniques to solve Vehicle Routing Problems
(VRP). They commented on the convenience of using similar
approaches for combinatorial problems other than the CVRP:
“it is convenient to highlight that the introduced methodology
can be used beyond the CVRP scenario: similar hybrid algo-
rithms based on the combination of Monte Carlo simulation
with already existing heuristics can be developed for other rout-
ing problems and, in general, for other combinatorial optimiza-
tion problems”.

4. THE ILS-ESP ALGORITHM

The ILS-ESP algorithm uses the ILS metaheuristic as a
framework, and combines it with a GRASP-like procedure.
Therefore we will define the four components of any ILS-based
algorithm (generate initial solution, local search, perturbation,
and acceptance criterion) with emphasis on three original points
that make the algorithm significantly different from previous
ILS-based algorithms as those described in [43, 42].
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Figure 3: enhancedSwap procedure to perform the ILS-ESP perturbation stage.

Figure 4: pseudocode for the ILS-ESP acceptance criterion stage.

The first of these three critical points is related with the per-
turbation component. During the perturbation process the so-
called ‘enhanced-swap’ operator is used. This is a very simple,
fast, and efficient operator which basically do the following:
(a) randomly selects (using a uniform distribution) two differ-
ent jobs from the current solution; (b) interchanges both jobs,
that is, interchange their positions in the permutation; and (c)
applies a classical ‘shift-to-left movement’ -like the one pro-
posed in the NEH heuristic- to each of those jobs following a
left-to-right order. The idea here is that we first consider a sub-
set of the sequence of jobs by looking at the left-most swapped
job to all elements to its left. Then we shift the right-most job
of this subset and tentatively insert it into all possible positions
of the sequence of jobs in this subset. Next, we select the one
that results in the minimum makespan. Afterwards, we take
this subset and reinsert the other sequences that were taken out.
We then apply this idea again for the other swapped job. This
‘shift-to-left’ movement takes advantage of Taillard accelera-
tions [45] to quickly determine which is the best position for
each job when only the partial solution up to its position is con-
sidered. Figure 3 shows the pseudo-code associated with this
perturbation operator. Notice that the proposed operator is re-
ally simple and it does not use any specific-value parameter that
needs any complex fine-tuning process.

A second critical point of our algorithm is the acceptation

criterion. The algorithm does not use a SA-based process -
like most other ILS-based algorithms do-, but instead it uses a
simplified version of a Demon-like process. This criterion is
designed to contribute, together with the perturbation process,
to avoid local minima during the algorithm execution. In order
to do so, the criterion simply states the following basic princi-
ples: (a) anytime a newly generated solution, aSol, improves
the current base solution, baseSol, the base solution is updated
(improved) to this new solution -likewise, this new solution is
compared also against the best-known solution, bestSol, to see
if it has to be updated too; and (b) even in the case that a newly
generated solution is worse than the base solution, the base so-
lution will be updated (deteriorated) to this new solution as far
as no consecutive deteriorations take place and the degradation
does not exceed the last improvement. Notice that by allowing
the base solution to degrade up to a certain level, the proba-
bilities that the algorithm gets trapped into a local minimum
are highly reduced. Figure 4 shows the pseudo-code associated
with this acceptance criterion process. Again, note that this is
attained with a very simple set of basic rules and without any
specific-value parameter.

A third critical point of our approach, and probably the most
innovative one, is related to the starting solution employed in-
side the ILS framework, generate initial solution. Usually,
this starting solution is the one provided by the NEH heuristic,

5



Figure 5: RandNEH procedure to perform the NEH biased randomization.

which produces a relatively good initial solution in most cases.
Using the NEH solution instead of a randomly generated solu-
tion is typically considered good practice in order to accelerate
the algorithm’s convergence. However, it seems reasonable to
think that when multiple runs of the same instance are executed
-either in sequential or in parallel mode-, using always the same
starting point can be a severe drawback for fast convergence
in those cases in which the NEH solution provides relatively
‘poor’ solutions. In this context, the term ‘poor’ does not nec-
essarily refer to the makespan value of the solution, but mostly
to the number of movements or transformations that must be ap-
plied to the initial solution in order to arrive at a pseudo-optimal
solution. Since we are especially interested in running multiple
iterations of any given instance, which can be seen as a form
of biased GRASP, we designed a way to generate different ran-
domized NEH solutions with similar properties. We use the
decreasing triangular distribution, i.e. the triangular probability
distribution with coincident lower limit and mode values. This
biased distribution was used to randomize the NEH heuristic in
a similar way Juan et al. [21] used the geometric distribution
to randomize another classical heuristic for the Vehicle Routing
Problem. As described before, the NEH heuristic is an itera-
tive algorithm which employs a list of jobs sorted by their total
completion time on all the machines to construct a solution for
the PFSP. At each step of this iterative process, the NEH re-
moves the job which is at the top of that list (with maximum
completion time) and adds to it a new list at the position that
results in the best partial solution with respect to makespan. As
a result, the NEH provides a ‘common sense’ deterministic so-
lution, by trying to schedule the most demanding jobs first. Our
method, instead, assigns a probability of selecting each job in
the list. According to our design, this probability should be co-
herent with the total time that each job needs to be processed
by all the machines, i.e. jobs with higher total times will be
more likely to be selected from the list before those with lower
total times. Finally, the selection process should be done with-
out introducing any parameters in the methodology -otherwise,

it would be necessary to perform fine-tuning processes, which
tend to be non-trivial and time-consuming. Figure 5 shows the
main pseudo-code associated with this process.

To satisfy all of the aforementioned requirements, we em-
ploy a discretized version of the decreasing triangular distri-
bution during the solution-construction process: each time a
new job has to be selected from the list, a triangular distribution
that assigns linearly diminishing probabilities to each eligible
job according to its corresponding total-processing-time value
is employed. That way, jobs with higher processing times are
always more likely to be selected from the list first, but the as-
signed probabilities are variable and they depend upon the num-
ber of eligible jobs at each step. By iterating this procedure, a
biased random search process is started. As a consequence,
in most cases it is possible to obtain in just a few iterations
(milliseconds for most tested instances) a randomized solution
which makespan is almost equal or even better than the orig-
inal NEH solution. Notice that similar biased randomization
processes can be developed for generating alternative initial so-
lutions in other ILS-based metaheuristics, either in the context
of the PFSP or in other combinatorial optimization problems.
As the experimental section will show, this might be especially
interesting when parallelization approaches are used to simul-
taneously run multiple instances of the algorithm. As a matter
of fact, we consider this hybridization of ILS with GRASP-like
metaheuristics as one of the major contributions of this paper,
and one that should be explored in other combinatorial opti-
mization problems.

Regarding the local search process that our algorithm uses,
it is the same simple and intuitive process used by Ruiz and
Stützle in [42]. Therefore, we refer the reader to their paper for
more details.

Figure 6 shows the final pseudo-code of the ILS-EPS algo-
rithm, which integrates the aforementioned perturbation oper-
ator, acceptance criterion, and randomization process into an
ILS framework. When comparing the ILS-ESP with other ILS
approaches successfully applied to the PFSP, we can notice that
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Figure 6: ILS-ESP general procedure.

all these methods share a general ILS structure as well as the lo-
cal search component. However, ILS-ESP significantly differs
from other ILS-based approaches in the following components
and operators: (i) the ”enhanced-swap” perturbation operator,
which is parameter-free; (ii) the Demon-based (also parameter-
free) acceptance criteria; and (iii) the biased randomization ot
the NEH heuristic in order to generate alternative initial solu-
tions of similar quality.

The computational complexity of the ILS-ESP algorithm is
discussed next. First of all, notice that the complexity of
the RandNEH procedure is the same than the complexity of
the NEH heuristic, which is employed in most modern meta-
heuristics to generate an initial solution. Using Taillard’s accel-
erations, its relative speed is O(n2m) [45]. As described before,
the local search procedure is the same classical process em-
ployed in other similar ILS-based approaches. The complexity
of this local search is O(n2m). Although it is iteratively ap-
plied until the current solution cannot be improved any further,
the number of iterations in a row tends to be relatively low:
each iteration is associated with a new improvement and that
is something unusual, especially as we get closer to an optimal
solution. In our opinion, however, the number of iterations is
not a big issue since it could be limited to n−1 without affecting
the performance of the algorithm in a significant way. Finally,
the perturbation procedure, which is also performed using Tail-
lard’s accelerations, is O(n2m). Since the stoping criterion we
use in practice is to limit the computation time to some factor of
n · m, it can be considered that the complexity of the ILS-ESP
algorithm is O(n3m2), i.e. polynomial, as in other ILS-based
algorithms.

Finally, and according to the computational experiments we
will discuss in this paper, it is worthy to notice that a fast and
‘high-quality’ (pseudo-) Random Number Generator (RNG)
can enhance somewhat the performance of some ILS-based al-
gorithms. In particular, we have observed that employing a
‘good’ RNG [24] instead of the RNG natively provided by the
programming language itself, seems to have some positive im-
pact on the overall results of those algorithms including a SA-
like acceptance criterion, where an intensive use of uniform
pseudo-random numbers in the interval (0, 1) is required.

5. TESTING THE ILS-ESP USING THE BEST AND AV-
ERAGE METRICS

The parameter-free algorithm described in this paper, the
ILS-ESP, was implemented as a Java application. Java was
chosen for several reasons. First, it generates portable code
which can run, without modifications, over different operating
systems. This can be a significant advantage when executing a
randomized algorithm in a parallel or distributed environment.
Secondly, being one of the simplest object-oriented languages,
it facilitates the rapid development of prototypes. The expected
counterpart is that, since Java code runs over a virtual machine,
a Java version of an algorithm will probably execute somewhat
slower than the corresponding C/C++ version.

An Intel Xeon at 2.0 GHz and 4 GB RAM, was used to per-
form all tests, which were run directly on the Netbeans IDE
platform for Java over Windows 7. In order to compare our
ILS-ESP algorithm with other state-of-the-art ILS-based ap-
proaches, the following parameterized algorithms (with param-

7



eters D and T ) were also codified in Java by the same program-
mers:

• The ILS98-T04, which is the algorithm proposed in [43]
using T = 0.4. According to the algorithm’s author, this
parameter value is the one offering the best algorithm’s
performance, and it was obtained after a fine-tuning pro-
cess.

• The IG-D4T04 and IG-D2T03, which represent two dif-
ferent parameterizations (D = 4, T = 0.4 and D = 2,
T = 0.3) of the well-known IG algorithm proposed in
[42]. The first set of parameters were obtained by the IG’s
authors after completing a DOE fine-tuning process. The
second set of parameters have been selected by us in order
to show how IG’s performance can be affected if other pa-
rameter values are selected instead of the ‘optimal’ ones.
At this point, it is worthy to remember that in multiple
experiments carried out by different authors [42, 49, 37],
the IG-D4T04 algorithm has outperformed any other algo-
rithm so far, including GA and TS with more parameters
than IG. Thus, the IG algorithm is highly cited in the PFSP
literature and, to the best of our knowledge, it is probably
the most efficient algorithm in this field.

• The RandIG-D4T04, which is our proposal for a random-
ized version of the IG-D4T04, i.e. we have incorporated
the GRASP-inspired biased randomization process devel-
oped for the ILS-ESP algorithm to the IG algorithm. This
version also employs a high-quality pseudo-random num-
ber generator [24].

As briefly mentioned in the previous section, the main differ-
ences between our approach, ILS-ESP, and other existing ILS-
based approaches can be summarized as follows:

• The GRASP-inspired biased randomization process,
which is able to generate alternative initial solutions of
‘good’ quality. As it will be shown in the experimental sec-
tion, this can be especially useful when multiple instances
of the algorithm are run in parallel.

• The new parameter-free perturbation operator, which ac-
cording to our experiments is able to compete with the
extremely efficient destruction-construction operator pro-
posed in the IG algorithm. The latter operator, however,
contains a ‘magic number’ (D = 4) which determines how
many jobs must be extracted during the destruction phase.
This value is considered to be independent of the problem
size, which is somewhat surprising (our guess is that the
authors fixed this value to avoid introducing more com-
plexity in the algorithm’s fine-tuning process).

• A transparent and parameter-free acceptance criterion
component, which is based on a Demon-like process. This
‘white-box’ approach substitutes the ‘black-box’ SA-like
approach employed in other ILS-based algorithms, which
also uses an additional parameter (T = 0.4).

For each one of the aforementioned algorithms, we de-
signed and performed extensive tests -using the same ma-
chine, same language program, same execution time, and
same programmer developer- on the 120 Taillard’s benchmark
instances [46]. These instances, which are available from
http://mistic.heigvd.ch/taillard/default.htm, are grouped in 12
sets of 10 instances each according to the number of jobs and
the number of machines, i.e.: set 20x5, set 20x10, set 20x20, set
50x5, set 50x10, set 50x20, set 100x5, set 100x10, set 100x20,
set 200x10, set 200x20, and set 500x20. Thus, for each ILS im-
plementation and for each tested instance, 10 independent iter-
ations (replicas) were run. Each replica was run for a maximum
time tmax = 0.01s × k × m, where k is the number of jobs, and m
is the number of machines. Then, for each set of replicas, best
experimental solution found (BEST10) as well as the average
value of the different replicas (AVG10) were registered. Also,
the best-known solution (BKS) associated with each instance
was obtained either from the aforementioned website or from
[49]. Notice that the tmax we are employing is really a small
value in terms of computational times. Thus, for the small-
est instances tmax = 1s, while for the largest ones tmax = 100s.
While analyzing the results it is important to keep in mind these
short computational times and the real difficulty of the selected
benchmarks. As stated by Zobolas et al. [49]: ”It should be
mentioned that the best known solutions in difficult instances
are usually found with branch and bound techniques or other
exact methods in powerful workstations run for extended time
periods, and thus are not directly comparable to metaheuris-
tic methods designed or intended to run on single processor
PCs and provide high-quality solutions in short computational
times.”

In the following subsections, the results associated with the
BEST10 values and those associated with the AVG10 values are
respectively analyzed and discussed.

5.1. A COMPARISON USING THE BEST10 METRIC
Table 1 shows, for each tested algorithm and set of instances,

a summary of the experimental results when considering the
gap between the BKS and the best-found solution in 10 runs.

From the averages in the last row of the table, it can be de-
rived that all tested ILS-based algorithms perform quite well
on the average (taking into account the maximum time each in-
stance is executed). However, it seems that our randomized
version of the IG algorithm with optimal parameter setting,
the RandIG-D4T04, is the one showing the best performance
(average gap = 0.33%). Just a slightly worse than this ran-
domized version, both the optimally parameterized IG-D4T04
and our parameter-free ILS-ESP seem to perform equally well
(average gap = 0.36%). Then, we have the parameterized
ILS98-T04 (average gap = 0.37%). Finally, far from the rest,
we find the non-optimally parameterized IG-D2T03 (average
gap= 0.44%). Notice that the later result seems to imply that
the IG algorithm offers some degree of sensitivity with respect
to its parameters, i.e. its performance can be greatly reduced
when non-optimal values are assigned to its parameters.

An interesting phenomenon that we have observed during
the computer experiments is that the use of a ‘high-quality’
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Table 1: Gaps between Best Known Solution and BES T10. Java code running on an Intel Xeon at 2.0 GHz.

Taillard set RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max.Time(s)

20x5 0.00% 0.04% 0.00% 0.04% 0.00% 1

20x10 0.00% 0.00% 0.00% 0.00% 0.04% 2

20x20 0.00% 0.01% 0.00% 0.00% 0.03% 4

50x5 0.00% 0.00% 0.00% 0.00% 0.00% 2.5

50x10 0.38% 0.48% 0.47% 0.45% 0.53% 5

50x20 0.62% 0.66% 0.71% 0.74% 1.00% 10

100x5 0.00% 0.01% 0.00% 0.01% 0.00% 5

100x10 0.10% 0.07% 0.10% 0.07% 0.10% 10

100x20 0.94% 1.04% 1.13% 1.07% 1.25% 20

200x10 0.08% 0.08% 0.09% 0.11% 0.14% 20

200x20 1.18% 1.29% 1.24% 1.32% 1.48% 40

500x20 0.62% 0.63% 0.63% 0.67% 0.71% 100

Averages 0.33% 0.36% 0.36% 0.37% 0.44% --

Figure 7: Multiple box-plot for the BEST10 metric.

pseudo-random number generator (RNG) seems to have a pos-
itive effect only on those ILS-based algorithms which incor-
porate an SA-like acceptation criterion. However, the use of
a high-quality RNG does not seem to have a perceptive im-
pact on those ILS-based algorithms which do not incorporate
an SA-like stage. Our hypothesis here is that the SA-like pro-
cess is more sensible to the use of a high-quality RNG because
it employs continuous random variables. On the contrary, the
remaining random processes are basically associated with dis-
crete variables -selection of job positions- and, therefore, they
do not seem to be too much sensible with respect to the RNG
quality.

Figure 7 shows a multiple-boxplot which allows for a visual
comparison of the algorithms’ performance. This Figure rein-
forces the idea that results from the first four approaches are
quite equivalent, although maybe the RandIG-D4T04 is per-
forming slightly better than the rest. It seems also clear from
this Figure that the non-optimized version of the IG algorithm

performs slightly worse than the rest.

An ANOVA test for comparing the average performance of
each algorithm using the BEST10 metric was also performed.
According to the test results (p−value = 0.984) and the overlap-
ping 95% confidence intervals, no statistically significant differ-
ence has been found among the various algorithms’ means. In
this case, however, the normality assumption seems not to be
met and, therefore, we also completed a Kruskal-Wallis non-
parametric test. The test results (p − value = 0.949) confirmed
the absence of statistically significant differences among the av-
erage performance of the considered algorithms.

It is worthy to note that, in our opinion, the BEST10 met-
ric is of great relevance since it is strongly related to the use of
multi-process capabilities of current (and future) computers. In
effect, most current workstations include multi-core processors
and, therefore, different instances of randomized algorithms -
like the ones compared in this paper- can be run in parallel
even in a single machine after conveniently setting the initial
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Table 2: Gaps between Best Known Solution and AVG10. Java code running on an Intel Xeon at 2.0 GHz.

Taillard set RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max.Time(s)

20x5 0.04% 0.04% 0.05% 0.05% 0.07% 1

20x10 0.05% 0.05% 0.06% 0.05% 0.17% 2

20x20 0.04% 0.05% 0.06% 0.05% 0.17% 4

50x5 0.00% 0.01% 0.01% 0.01% 0.02% 2.5

50x10 0.71% 0.69% 0.78% 0.69% 0.84% 5

50x20 1.02% 1.04% 1.08% 1.11% 1.48% 10

100x5 0.02% 0.01% 0.02% 0.04% 0.03% 5

100x10 0.28% 0.27% 0.32% 0.31% 0.37% 10

100x20 1.46% 1.47% 1.55% 1.46% 1.68% 20

200x10 0.23% 0.23% 0.26% 0.26% 0.28% 20

200x20 1.57% 1.52% 1.57% 1.57% 1.73% 40

500x20 0.78% 0.80% 0.79% 0.83% 0.84% 100

Averages 0.52% 0.52% 0.55% 0.54% 0.64% --

Figure 8: Multiple box-plot for the AVG10 metric.

seeds for the RNG and without increasing the total clock time
employed. Of course, by using a computer cluster instead of
a single machine, even much more instances of a randomized
algorithm can be run for a given clock time. Traditionally, how-
ever, the most usual metric to compare sequential algorithms in
the PFSP literature is the one referred to the average of several
iterations. This average value helps to reduce somewhat the
‘randomness effect’, due to which a different solution is likely
to be obtained each time a randomized algorithm is run. The
next subsection analyzes the results of our tests using the aver-
age metric.

5.2. A COMPARISON USING THE AVG10 METRIC

Table 2 shows, for each tested algorithm and set of instances,
a summary of the experimental results when considering the
gap between the BKS and the average solution in 10 runs.

From the last row in the table, it can be derived that both
RandIG-D4T04 and IG-D4T04 perform equally well for this

metric (average gap = 0.52%) while our ILS-ESP and the
ILS98-T04 are just slightly beyond (average gaps = 0.55% and
0.54% respectively). Lower results are obtained for the non-
optimally parameterized IG-D2T03 (average gap = 0.64%).
Again, the later result seems to imply that performance of the
IG algorithm greatly depends on the proper selection of its pa-
rameters.

Figure 8 shows a multiple-boxplot comparing the perfor-
mance of the considered algorithms. The visual comparison re-
inforces the idea that results from the first four approaches are
quite equivalent, although maybe the RandIG-D4T04 and the
IG-D4T04 are performing slightly better for the AVG10 metric
than the ILS-ESP and the ILS98-T04. It seems also clear from
the figure that the non-optimized version of the IG algorithm
performs slightly worse than the rest.

An ANOVA test for comparing the average performance of
each algorithm, using the AVG10 metric, was also completed.
According to the test results (p−value = 0.985) and the overlap-
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Table 3: Gaps between Best Known Solution and BES T (n) for Taillard 50x20. Java code running on an Intel Xeon at 2.0 GHz.

Number of replicas RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max.Time(s)

10 0.62% 0.66% 0.66% 0.74% 1.00% 10

20 0.59% 0.62% 0.62% 0.64% 0.88% 10

30 0.53% 0.59% 0.54% 0.63% 0.83% 10

40 0.52% 0.58% 0.52% 0.55% 0.80% 10

50 0.48% 0.58% 0.47% 0.52% 0.75% 10

60 0.46% 0.56% 0.47% 0.52% 0.75% 10

70 0.46% 0.55% 0.45% 0.51% 0.73% 10

80 0.46% 0.51% 0.45% 0.51% 0.71% 10

Figure 9: Multiple box-plot for the BEST80 metric.

ping 95% confidence intervals, no statistically significant dif-
ference has been found among the various algorithms’ means.
Again, the normality assumption seems not to be met, and a
Kruskal-Wallis test was also carried out (p − value = 0.895)
to support the lack of significant differences among the algo-
rithms’ average performance.

To conclude this section, it is important to notice that despite
its simplicity and lack of fine-tuning processes, the proposed
ILS-ESP algorithm shows itself to be quite efficient, both with
respect to the BEST10 and the AVG10 metrics. This is quite
interesting in our opinion since, as it was noticed before, some
of the most efficient metaheuristics are not used in practice be-
cause of the difficulties they present when trying to implement
them and because the fact that they are “black-boxes” to non-
experts -and thus, there is a lack of credibility. On the con-
trary, simple approaches like the one introduced here tend to
be more flexible and transparent which, in turn, makes them
seem more credible and, therefore, more likely to be used in
real-life scenarios. Finally, regarding the BEST10 metric, no-
tice that RandIG-D4T04, our randomized version of IG, seems
to slightly outperform the original IG-D4T04 version. To the
best of our knowledge, it is the first time the IG algorithm has
been outperformed. The result also suggests the convenience of

introducing GRASP-like approaches into ILS metaheuristics to
diversify the generation of initial solutions.

6. ANALYZING THE EFFECT OF PARALLELIZATION
OVER THE ILS-ESP

As it has been previously noticed, the algorithm proposed
here can be easily parallelized by splitting the random-number-
generation sequence in different streams and using each stream
in different threads or CPUs. This can be an interesting field
to explore, given the current trend in multi-core processors and
parallel computing. Offering competitive solutions to complex
problems in real time and without adjustments beforehand still
presents a challenge. In spite of this, it has been empirically
observed that it is possible to significantly reduce the execu-
tion time that randomized algorithms need to obtain “good” so-
lutions, depending on the seed that is chosen for the pseudo-
random number generator [20]. There are new processor de-
sign paradigms based on gaining computation capacity through
the parallel execution of multiple processes and threads (multi-
core). Following this concept, new, affordable Graphic Process-
ing Units (GPUs) have recently been introduced on the mar-
ket that offer the capacity of executing hundreds -or even thou-
sands- of threads concurrently.
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Table 4: Gaps between Best Known Solution and AVG(n) for Taillard 50x20. Java code running on an Intel Xeon at 2.0 GHz.

Number of replicas RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max.Time(s)

10 1.06% 1.10% 1.20% 1.12% 1.48% 10

20 1.05% 1.07% 1.16% 1.13% 1.46% 10

30 1.04% 1.05% 1.18% 1.12% 1.46% 10

40 1.03% 1.06% 1.16% 1.12% 1.46% 10

50 1.03% 1.07% 1.16% 1.11% 1.47% 10

60 1.03% 1.07% 1.17% 1.12% 1.48% 10

70 1.03% 1.07% 1.16% 1.12% 1.48% 10

80 1.03% 1.07% 1.16% 1.12% 1.47% 10

Figure 10: Multiple box-plot for the AVG80 metric.

All in all, the idea is to execute multiple instances or repli-
cas of the algorithm in parallel, each replica using a different
seed for the RNG. Each of these instances can be considered
as an individual agent that is searching the solution space. In
other words, the idea is that each of these multiple agents will
start to search in a different region of the solution space -by
using different seeds. Our hypothesis here is that, being a ran-
domized approach with diversified initial solutions, a parallel
version of the algorithm can provide very competitive results in
“real time” for most medium-size PFSP problems.

To test how parallelization could contribute to improve our
approach and, in particular, how increasing the number of repli-
cas can potentially enhance the ILS-ESP results, we have car-
ried out two extensive experiments on the Taillard’s 50x20 set
of instances. These instances have been selected because they
are among the ones that most of the algorithms with better per-
formance find difficult to solve. As before, the termination con-
dition of each execution or replica is given by an instance-size
dependent maximum time tmax = 0.01s × k × m. Once more,
we will use the BEST and AVG metrics defined before and we
will compare the performance of the different ILS-based ap-
proaches. The difference now with regards to previous experi-
ments is that we will analyze how results evolve as the number

of replicas is increased from n = 10 to n = 80. Table 3 and
Figure 9 show the results obtained for the BEST(n) metric.

Notice how there is a visible difference between the non-
optimized version of the IG algorithm (the IG-D2T03) and the
rest of algorithms. The resulting ANOVA test is quite close
from showing statistically significant differences among the al-
gorithms (p−value = 0.051). Also, notice that as the number of
replicas is increased, both the ILS-ESP and the RandIG-T4T04
seem to benefit from our randomized NEH process which di-
versifies the starting solution in the ILS framework. Thus, for
n = 80 the ILS-ESP provides a 0.45% gap, which is slightly
lower than the rest of the ILS-based approaches. In our opin-
ion this is an interesting result, especially when considering the
simplicity of the ILS-ESP algorithm and the fact that it contains
no specific-value parameters.

Finally, Table 4 and Figure 10 show the results obtained for
the AVG(n) metric.

Once more, there is a noticeable difference between the non-
optimized version of the IG algorithm and the rest of the ap-
proaches. Under this metric, the best performance for n = 80
is attained by the RandIG algorithm, that is, our randomized
version of the IG algorithm. The resulting ANOVA test show
the existence of significant differences among the different al-
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gorithms (p − value = 0.001).

7. CONCLUSION

In this paper an efficient, simple, and parameter-free algo-
rithm for solving the Permutation Flowshop Sequencing Prob-
lem (PFSP) has been presented. The ILS-ESP algorithm, which
is based on an embarrassingly parallel iterated local search
framework, is able to compete with state-of-the-art metaheuris-
tics. These other metaheuristics typically use a deterministic
initial solution and contain several parameters. The proposed
ILS-ESP method has the four desirable features of a good meta-
heuristic: accuracy, speed, simplicity, and flexibility. In order
to develop our approach, we have designed a new perturbation
operator (enhanced swap), a new demon-based acceptation cri-
terion, and a biased randomization process of the well-known
NEH heuristic.

Another contribution of this paper is the incorporation of
the aforementioned randomization process to an existing ILS-
based algorithm containing an SA-like acceptance criterion.
According to the computational tests performed, the perfor-
mance of the parameterized ILS-based algorithm can be en-
hanced by simply adding our GRASP-inspired randomization
process combined with the use of a high-quality pseudo-random
generator.

All in all, either our randomized version of the parameter-
ized ILS or the proposed parameter-free algorithm seem to be
excellent alternatives for solving the PFSP.
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